Испытания Бернулли
последовательность n независимых испытаний, каждое с двумя исходами ("успех" - "неудача"), вероятности которых (p,q) не меняются от испытания к испытанию
∑(− 1)k-1ak, ak > 0 (k от 1 до ∞): если lim an = 0 (n→∞) и an ≥ an+1, то ряд сходится и остаток его |rn| ≤ an+1
Для установления сходимости таких рядов существует достаточный признак сходимости, называемый признаком...
Теорема 1 (признак Лейбница)
Пусть числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ удовлетворяет...
К данному ряду применим признак Лейбница....
Следовательно, по признаку Лейбница данный ряд сходится, причем его сумма $S\le a_{1} =1$....
Пример 4
Исследовать на сходимость знакочередующийся ряд:
\[\sum \limits _{n=1}^{\infty }\left(-1
не всякий знакопеременный ряд является знакочередующимся....
Теорема 1 (достаточный признак сходимости знакопеременных рядов)
Знакопеременный ряд $\sum \limits...
=\sum \limits _{n=1}^{\infty }\frac{(-1)^{n-1} }{n} $ сходится по признаку Лейбница, а ряд, составленный...
Для этого проверим выполнение условий признака Лейбница....
Таким образом, для исходного ряда выполнены все условия признака Лейбница, т.е. он сходится.
последовательность n независимых испытаний, каждое с двумя исходами ("успех" - "неудача"), вероятности которых (p,q) не меняются от испытания к испытанию
такое отображение множества в его фактормножество, что образом любого элемента является класс эквивалентности, содержащий этот элемент
процесс составления или вычисления суммы
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве