Справочник от Автор24
Нужна помощь?
Найдем эксперта за 5 минут
Подобрать эксперта
+2

Признак Лейбница сходимости знакочередующегося ряда

Предмет Высшая математика
👍 Проверено Автор24

∑(− 1)k-1ak, ak > 0 (k от 1 до ∞): если lim an = 0 (n→∞) и an ≥ an+1, то ряд сходится и остаток его |rn| ≤ an+1

Научные статьи на тему «Признак Лейбница сходимости знакочередующегося ряда»

Знакочередующиеся ряды и признак Лейбница

Для установления сходимости таких рядов существует достаточный признак сходимости, называемый признаком...
Теорема 1 (признак Лейбница) Пусть числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ удовлетворяет...
К данному ряду применим признак Лейбница....
Следовательно, по признаку Лейбница данный ряд сходится, причем его сумма $S\le a_{1} =1$....
Пример 4 Исследовать на сходимость знакочередующийся ряд: \[\sum \limits _{n=1}^{\infty }\left(-1

Статья от экспертов

Знакопеременные ряды, абсолютная и условная сходимость

не всякий знакопеременный ряд является знакочередующимся....
Теорема 1 (достаточный признак сходимости знакопеременных рядов) Знакопеременный ряд $\sum \limits...
=\sum \limits _{n=1}^{\infty }\frac{(-1)^{n-1} }{n} $ сходится по признаку Лейбница, а ряд, составленный...
Для этого проверим выполнение условий признака Лейбница....
Таким образом, для исходного ряда выполнены все условия признака Лейбница, т.е. он сходится.

Статья от экспертов

Еще термины по предмету «Высшая математика»

Кантора теорема

1. если функция непрерывна в ограниченной замкнутой области, то она равномерно непрерывна в этой области; 2. множество, состоящее из всех подмножеств данного непустого множества M (булеан), не эквивалентно ни самому M, ни его подмножеству

🌟 Рекомендуем тебе

Нуль

число, обладающее свойствами: a ± 0 = a, a ⋅ 0 = 0; деление на нуль невозможно

🌟 Рекомендуем тебе
Смотреть больше терминов

Повышай знания с онлайн-тренажером от Автор24!

  1. Напиши термин
  2. Выбери определение из предложенных или загрузи свое
  3. Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных карточек
Попробовать тренажер