Содержание химических элементов в клетке
Подобность элементарного химического состава клеток всех организмов свидетельствует о единстве живой природы. Вместе с тем нет ни одного химического элемента живых организмов, которые не встречались бы в телах неживой природы. Этим подтверждается единство неживой и живой природы.
Наибольшее процентное содержание в клетке составляют четыре элемента:
- кислород (65 – 70%),
- углерод (15 – 18%),
- водород (8 – 10%),
- азот (2 – 3%).
Это органогенные элементы.
В целом они составляют 95 – 98% общей массы живого организма.
Такие элементы, как кальций, калий, фосфор, сера, силиций, натрий, хлор, магний, железо составляют в живом организме десятые доли процента. Перечисленные элементы относятся к макроэлементам.
Кобальт, цинк, медь, марганец, хром, бром, бром, йод, литий, радий содержатся в очень малых количествах, меньших за 0,01%. Их называют микроэлементами.
Важность того или другого химического элемента для живых существ не определяется его количеством.
Ряд микроэлементов входят в состав ферментов, гормонов и других жизненно важных соединений, которые влияют на процессы размножения, кровообразования и др.
Все живые организмы резко отличаются от окружающей неорганической природы по количественному составу химических элементов.
Углерода в растениях содержится около 18%, а в почве – меньше 1%, а кремния, наоборот, в растениях – 0,15%, а в почве – 33%.
Большое содержание углерода в составе живых организмов определяется наличием в них углеродосодержащих соединений, которые называются органическими.
В некоторых живых организмах накопляются определённые химические элементы.
В водорослях накопляется йод, в лютиковых – литий, а в болотной ряске – радий и т. п.
Вода и другие неорганические вещества, их роль в жизнедеятельности клетки
Из неорганических соединений в клетке больше всего воды.
Чем выше интенсивность обмена веществ в той или иной ткани, тем больше она содержит воды.
В эмбрионе человека в возрасте 1,5 месяцев вода составляет 97,5%, у восьмимесячного – 83, у новорождённого ребёнка – 74, у взрослого человека в среднем 66%.
Содержание воды у человека в разных органах и тканях тоже разное.
Мозг взрослого человека содержит 86% воды, печень – 70, кости – 20% воды.
С возрастом её содержание в тканях уменьшается.
Вода выполняет в клетках много функций:
- сохранение объёма,
- упругость клетки,
- растворение различных химических веществ.
Кроме того, вода – это та среда, в которой происходят все химические процессы. Она непосредственно берёт участие во всех химических реакциях: жиры, углеводы и другие органические соединения расщепляются в результате химического взаимодействия их с водой.
Благодаря высокой теплоёмкости вода оберегает цитоплазму от резких колебаний температуры и способствует терморегуляции клеток и организма.
Часть молекул воды (около 15%) в клетках находится в связанном состоянии с белковыми молекулами. Они изолируют молекулы белка друг от друга в коллоидных растворах.
Большое количество органических веществ клетки (липиды) имеют низкую растворимость в воде. Притяжение молекул воды к этим веществам достаточно слабое, потому они, составляя основу клеточной мембраны, ограничивают переход воды из клетки во внешнюю среду и наоборот, а также из одних участков клетки в другие.
Минеральные соли в большом количестве содержатся в клетках опорных органов – хитиновых панцирей, черепашек моллюсков, костей. В цитоплазме других клеток большая часть солей содержится в диссоциированном состоянии в виде катионов и анионов – калия, натрия, кальция, хлора и др.
Содержание в клетке катионов имеет важное значение для её функционирования. Поступление воды в клетку зависит от концентрации солей, потому что клеточная мембрана проницаема для молекул воды и непроницаема для многих больших молекул и ионов. Если в окружающей среде содержится меньшее количество ионов, чем в цитоплазме клетки, то вода поступает в клетку до выравнивания концентрации солей (осмос).
Наличие солей в цитоплазме определяет её буферные свойства – способность поддерживать рН на постоянном уровне (близко к нейтральной реакции), несмотря на то, что в процессе обмена веществ непрерывно образуются кислые и щелочные продукты.
Строение и биологические функции органических веществ, входящих в состав клетки
Различные клетки могут очень отличаться по содержанию органических веществ.
В перерасчёте на сухую массу в клетках содержится липидов – 5-15%, белков около 10-12, углеводов – 0,2-2, нуклеиновых кислот – 1-2% массы клетки.
Большинство органических соединений имеют длинные молекулы (полимеры), состоящие из цепи более простых молекул (однородные или разнородные мономеры).
Углеводы в большом количестве содержатся в растительных клетках. В некоторых плодах, семенах, клубнях количество их иногда достигает 90%.
В животных клетках углеводов значительно меньше – до 5%.
Простые углеводы называются моносахаридами, сложные – полисахаридами.
Из моносахаридов в организмах встречаются пентозы (имеют 5 атомов углерода) и гексозы (6 атомов углерода). Среди пентоз наиболее важны рибоза (составляющая РНК) и дезоксирибоза (составляющая ДНК). Среди гексоз – глюкоза и фруктоза: их много содержится в плодах растений и в мёде, чем обуславливается их сладкий вкус. Глюкоза содержится и в крови человека (около 0,12%). Этот углевод – основной энергетический материал обмена веществ для всех клеток.
В результате полимеризации двух или нескольких моносахаридов образуются полисахариды.
Среди дисахаридов наиболее распространены сахароза (состоит из молекул глюкозы и фруктозы) и лактоза, или молочный сахар (состоит из молекул глюкозы и галактозы).
Из полимеров в природе чаще всего крахмал, целлюлоза (клетчатка; у растений) и гликоген (у животных). Общая формула их – (С6Н10О5)n, а мономером этих полисахаридов является глюкоза.
Каждая клетка клетчатки (целлюлозы) образована цепью из 150 – 200 молекул глюкозы.
Углеводы – своеобразное «топливо» для живой клетки: окисляясь, они освобождают химическую энергию (1 г – 17,6 кДж), которая используется клеткой на все процессы жизнедеятельности. У растений углеводы выполняют и строительные функции: из них образуются оболочки клеток.
Липиды – это низкомолекулярные вещества с гидрофобными свойствами. Вместе с белками и углеводами это основные компоненты всех видов клеток. В различных органах и тканях содержание липидов неодинаково. Особенно много их в нервной ткани, сердце, печени, почках, крови, семенах и плодах некоторых растений.
По химическому строению липиды достаточно разнообразны. В их состав входят высшие жирные кислоты, спирты, альдегиды, азотистые основания, аминокислоты, аминоспирты, углеводы, фосфорная кислота и др. Между этими соединениями могут образовываться связи: эфирные, сложноэфирные, гликозидные, амидные, фосфоэфирные и т. п.
Классификация липидов очень сложная через сложность строения молекул этих веществ и их разнообразие. Сейчас все липиды принято делить на нейтральные (жиры) и фосфолипиды.
Нейтральные липиды – это производные высших жирных кислот и трёхатомного спирта глицерина. Как и углеводы, жиры используются как источник энергии: при расщеплении одного грамма жира выделяется 38,9 кДж энергии.
Подкожный жир играет важную теплоизоляционную роль для многих животных. У животных, впадающих в спячку, жиры обеспечивают организм необходимой энергией, поскольку питательные вещества извне в это время не поступаю. Основной запас питательных веществ жиры составляют и в семенах многих растений.
Фосфолипиды – наибольшая часть липидов, которые входят в состав мембран. Если в среднем на липиды приходится 40% сухой массы мембран, то из них: 80% - на фосфолипиды. Отсюда понятно, что основные функции мембран (регулирование проницательности различных веществ и клеточного содержимого, функционирование ионных насосов, восприятие, обработка и передача внутрь клетки информации с её поверхности, иммунный ответ, синтез белков и много другого) осуществляются с участием фосфолипидов.
Именно липиды являются растворителями некоторых жирорастворимых витаминов, поскольку сами не растворяются в воде, но хорошо растворяются в органических растворителях.
Белки, или протеины, составляют 50 – 80% всех органических веществ клетки, они входят в состав межклеточной жидкости, лимфы, плазмы крови. Все белки – полимеры, мономерами которых являются аминокислоты. В состав белков входит приблизительно 20 различных аминокислот.
Значение белков достаточно велико, потому что жизнь всегда связана с белками. Белки входят в состав всех органоидов и мембран клетки составляя главный структурный материал.
Очень важна двигательная функция белков. Комплексы из молекул некоторых белков (например, актина и миозина) способны к сокращению. Благодаря этой способности белков осуществляется сокращение мышц, движение ресничек и жгутиков, перемещение хромосом в клетке и т.п.
Некоторые белки выполняют в организме сигнальные функции. С ними связана раздражительность клеток и организмов.
Ещё одна функция белков – защитная, которая обеспечивается особенными белками (антителами), которые обезвреживают, нейтрализуют посторонние (чужеродные) для организма вещества.
В конце концов, белки являются источником энергии. В процессе расщепления белковой молекулы на отдельные аминокислоты часть их может использоваться для биосинтеза новых молекул белка, а часть расщепляется окончательно, освобождая энергию. При полном расщеплении 1 г белка освобождается 17,6 кДж энергии.
Огромное значение имеют белки как биокатализаторы, или ферменты.
Молекулы одних ферментов состоят только из белков, а другие могут функционировать лишь при наличии в молекуле двух компонентов – белкового (апофермента) и небелкового (кофермента). Коферментами могут быть различные органические вещества, в частности и витамины.
Ни одна реакция в клетке не может происходить с нормальной скоростью без участия ферментов как биологических катализаторов.
При классификации ферментов учитываются как специфика их действия на субстрат, так и химические реакции. Различают ферменты – липазы (расщепляют липиды), амилазы (расщепляют углеводы), пептидазы (расщепляют белки), а также ферменты окислительно–восстановительных реакций, реакций гидролиза и синтеза, реакций перенесения, присоединения или отщепления определённых органических соединений. Сегодня составлен каталог ферментов, в котором каждый из них имеет свой номер и систематическое название.
Пепсин по номенклатуре ферментов обозначается – 3.4.4.1 (пептид-пептидогидролаза), а липаза – 3.1.1.3 (гидролаза эфиров глицерина).
Выборочность действия ферментов на различные химические вещества связана с их строением. Молекулы всех ферментов имеют один или несколько активных центров, которыми они прикрепляются к тем веществам, на которые способны действовать. Потому действие ферментов всегда специфично.
Два пищеварительных фермента – пепсин и трипсин – участвуют в расщеплении молекул белков до небольших фрагментов, но каждый из них действует по-разному. Пепсин разрушает связи аминокислоты тирозина, а трипсин – аминокислот аргинина и лизина, причём первый действует на аминогруппы, а второй – на карбоксильные группы аминокислот.
Обычно ферменты катализируют много последовательных реакций, причём вещества, возникщие с участием первого фермента, служат субстратом для другого и т.п.
Действие ферментов в клетке всегда согласовано и происходит в определённой последовательности. Это достигается благодаря тому, что ферменты локализованы в разных участках клеточной мембраны. В органоидах клетки ферменты также расположены последовательно, образуя упорядоченные системы.
В зависимости от наличия комплекса ферментов у различных видов организмов и в различных органах обмен веществ происходит по-разному. Для функционирования каждого фермента необходимы оптимальные температура и реакция среды, поскольку одни активны в нейтральной (ферменты слюны), другие – в кислой (ферменты желудочного сока) или щелочной (ферменты поджелудочной железы) среде. При нагревании выше 60 градусов многие ферменты инактивируются (происходит денатурация белка).
Нуклеиновые кислоты (лат. nucleus – ядро) были впервые обнаружены и выделены из ядер клеток. Существует два вида нуклеиновых кислот – дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Основная часть ДНК сосредоточена в хромосомах клетки и лишь небольшое её количество содержится в митохондриях и пластидах. РНК содержится в ядрышках, а также в цитоплазме.