Разместить заказ
Вы будете перенаправлены на Автор24

Формулы прогрессий. Арифметическая прогрессия. Геометрическая прогрессия

Все предметы / Математика / Последовательности. Числовые последовательности / Формулы прогрессий. Арифметическая прогрессия. Геометрическая прогрессия

Понятие числовой последовательности

Введем два определения числовой последовательности:

Определение 1

Числовая функция, у которой область определения совпадает с натуральным рядом чисел, будет называться числовой последовательностью.

Определение 2

Отображения натурального ряда чисел на множество действительных чисел будет называться числовой последовательностью: $f:N→R$

Числовая последовательность обозначается следующим образом:

${p_k }={p_1,p_2,…,p_k,…}$

где $p_1,p_2,…,p_k,…$ - действительные числа.

Есть три различных способа для задания числовых последовательностей. Опишем их.

  • Аналитический.

    В этом способе последовательность задается в виде формулы, с помощью которой можно найти любой член этой последовательности, подставляя в нее вместо переменной натуральные числа.

  • Рекуррентный.

    Данный способ задания последовательности заключается в следующем: Дается первый (или несколько первых) член данной последовательности, а затем формула, которая связывает любой член ее с предыдущим членом или предыдущими членами.

  • Словесный.

    При этом способе числовая последовательность просто описывается без введения каких-либо формул.

Двумя частными случаями числовых последовательностей являются арифметическая и геометрическая прогрессии.

Арифметическая прогрессия

Определение 3

Арифметической прогрессией называется последовательность, которая словесно описывается следующим образом: Задано первое число. Каждое же последующее определяется как сумма предыдущего с наперед заданным конкретным числом $d$.

В этом определении данное наперед заданное число будем называть разностью арифметической прогрессии.

Очевидно, что рекуррентно эту последовательность записываем следующим образом:

$p_1,p_{k+1}=p_k+d.$

Замечание 1

Отметим, что частным случаем арифметической прогрессии является постоянная прогрессия, при которой разность прогрессии равняется нулю.

Для обозначения арифметической прогрессии в ее начале изображается следующий символ:

Готовые работы на аналогичную тему

Из рекуррентного соотношения для данной последовательности легко выводится формула для нахождения любого члена через первый:

$p_k=p_1+(k-1)d$

Сумма $k$ первых членов можно найти по формуле

$S_k=\frac{(p_1+p_k)k}{2}$ или $S_k=\frac{(2p_1+(k-1)d)k}{2} $

У арифметической прогрессии есть так называемое характеристическое свойство, которое определяется формулой:

$p_k=\frac{p_{k-1}+p_{k+1}}{2}$

Геометрическая прогрессия

Определение 4

Геометрической прогрессией называется последовательность, которая словесно описывается следующим образом: Задано первое число, не равное нулю. Каждое же последующее определяется как произведение предыдущего с наперед заданным конкретным не равным нулю числом $q$.

В этом определении данное наперед заданное число будем называть знаменателем геометрической прогрессии.

Очевидно, что рекуррентно эту последовательность записываем следующим образом:

$p_1≠0,p_{k+1}=p_k q,q≠0$.

Замечание 2

Отметим, что частным случаем геометрической прогрессии является постоянная прогрессия, при которой знаменатель прогрессии равняется единице.

Для обозначения арифметической прогрессии в ее начале изображается следующий символ:

Из рекуррентного соотношения для данной последовательности легко выводится формула для нахождения любого члена через первый:

$p_k=p_1 q^{(k-1)}$

Сумма $k$ первых членов можно найти по формуле

$S_k=\frac{p_k q-p_1}{q-1}$ или $S_k=\frac{p_1 (q^k-1)}{q-1}$

У геометрической прогрессии есть так называемое характеристическое свойство, которое определяется формулой:

$p_k^2=p_{k-1} p_{k+1}$

Примеры задач

Пример 1

Найти сумму $5$ членов прогрессии, описывающей четные положительные числа.

Решение.

Последовательность положительных четных чисел имеет вид

$2,4,6,8,10,…$

Она является арифметической.

Очевидно, что разность данной арифметической прогрессии равняется

$d=4-2=2$

Тогда по второй формуле суммы арифметической прогрессии, получим:

$S_5=\frac{2\cdot 2+(5-1)\cdot 2}{2\cdot 5}=30$

Ответ: $30$.

Пример 2

Найти сумму $5$ членов прогрессии, описывающей степени натуральных чисел тройки.

Решение.

Последовательность таких чисел имеет вид

$3,9,27,81,…$

Она является геометрической.

Очевидно, что знаменатель данной геометрической прогрессии равняется

$q=\frac{9}{3}=3$

Тогда по второй формуле суммы арифметической прогрессии, получим:

$S_5=\frac{3\cdot (3^5-1)}{3-1}=363$

Ответ: $363$.

Сообщество экспертов Автор24

Автор этой статьи

Автор статьи

Елена Борисовна Калюжная

Эксперт по предмету «Математика»

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис