Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Кантора теорема

Предмет Высшая математика
👍 Проверено Автор24

1. если функция непрерывна в ограниченной замкнутой области, то она равномерно непрерывна в этой области; 2. множество, состоящее из всех подмножеств данного непустого множества M (булеан), не эквивалентно ни самому M, ни его подмножеству

Научные статьи на тему «Кантора теорема»

Мартингалы и теоремы Кантора Юнга Бернштейна и Валле-Пуссена

Во многих работах изучались вопросы единственности представления функций одномерными и кратными рядами по системе Хаара. Хорошо известно, что подпоследовательность частичных сумм ряда Хаара с номерами 2 k является мартингалом на некотором фильтрованном вероятностном пространстве (Ω, F, (F k ), P). В нашей работе вводится понятие U-множества для мартингалов и устанавливается ряд теорем единственности для мартингалов на произвольном компактном фильтрованном вероятностном пространстве. В частности, доказывается, что каждое множество U∈∪ ∞ k=0F k с P(U ) = 0 является U-множеством для мартингалов на компактном пространстве (Ω, F, (F k ), P) (теорема типа Кантора Юнга Бернштейна). Приведенный результат дополняется рядом теорем типа Валле-Пуссена.

Научный журнал

О некоторых «Опровержениях» теоремы г. Кантора о несчетности множества действительных чисел

Обосновывается несостоятельность некоторых опровержений канторовского диагонального метода, появившихся в последнее время

Научный журнал

Еще термины по предмету «Высшая математика»

Изоклина

кривая, в каждой точке которой наклон поля направлений один и тот же

🌟 Рекомендуем тебе

Класс алгебраической кривой

максимальное число касательных, которые можно провести к данной алгебраической кривой из произвольной точки P плоскости, не лежащей на этой кривой

🌟 Рекомендуем тебе
Смотреть больше терминов

Повышай знания с онлайн-тренажером от Автор24!

  1. Напиши термин
  2. Выбери определение из предложенных или загрузи свое
  3. Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных карточек
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot