Разместить заказ
Вы будете перенаправлены на Автор24

Формулы степеней

8-800-775-03-30 support@author24.ru

Определение степени

Существуют три вида действительных степеней, которые стоит рассматривать отдельно. Рассмотрим вначале понятия степеней с целым, рациональным и иррациональным показателями.

Определение 1

Степенью действительного числа $\alpha$ c целым показателем $z$, будем называть число, определяющееся формулой:

$\alpha^z=\cases{\alpha \cdot \alpha \cdot…\cdot \alpha(z \ раз), \ при z >0\\1, \ при \ z=0\\\frac{1}{\alpha \cdot \alpha\cdot …\cdot \alpha(z \ раз)}, \ при z

Определение 2

Степенью действительного числа $\alpha$ c рациональным показателем $q=\frac{r}{s}$ $(r∈Z,s∈N)$, будем называть число, определяющееся формулой:

$\alpha^q=\sqrt[s]{\alpha^r}$

Замечание 1

Нужно отметить, что когда $s$ – четное число, то $\alpha >0$.

Определение 3

Степенью положительного числа $\alpha$ c иррациональным показателем $j$, будем называть число $\alpha^j$, определяющееся следующим образом:

Когда $\alpha=1$, то $\alpha^j=1$;

Когда $\alpha >1$, то $\alpha^j$ будет удовлетворять следующему условию: $\alpha^{q_1}j$.

Когда $0j$.

Определение 4

Степенью положительного числа $\alpha$ c иррациональным показателем $j$, будем называть число $\alpha^j$, равное пределу последовательности $\alpha^{j_0}, \alpha^{j_1}, \alpha^{j_2}$,…, в которой $j_0,j_1,j_2...$ являются последовательными десятичными приближениями иррационального числа $j$.

Замечание 2

Здесь стоит заметить, что при $j >0$ $0^j=0$, а при$ j

Готовые работы на аналогичную тему

Рассмотрим далее свойства степеней.

Формулы степеней

Для начала рассмотрим и докажем свойства для степени с целыми показателями.

Формула 1: $\alpha^z \cdot \alpha^k=\alpha^{z+k}$

Доказательство.

По определению 1, будем иметь

$\alpha^z=\alpha \cdot \alpha\cdot…\cdot \alpha(z \ раз)$, $\alpha^k= \alpha\cdot \alpha\cdot…\cdot \alpha(k \ раз)$

Тогда

$\alpha^z\cdot \alpha^k=\alpha\cdot \alpha\cdot …\cdot \alpha(z \ раз)\cdot \alpha\cdot \alpha\cdot …\cdot \alpha(k \ раз)=\alpha\cdot \alpha\cdot…\cdot \alpha(z+k \ раз)=\alpha^{z+k}$

Формула 2: $\frac{\alpha^z}{\alpha^k} =\alpha^{z-k}$

Доказательство.

$\frac{\alpha^z}{\alpha^k} =\alpha^z\cdot \alpha^{-k}$

По формуле 1, имеем

$\frac{\alpha^z}{\alpha^k} =\alpha^z\cdot \alpha^{-k}=\alpha^{z+(-k)}=\alpha^{z-k}$

Формула 3: $(\alpha \beta)^z=\alpha^z\cdot \beta^z$

Доказательство.

По определению 1, будем иметь

$(\alpha \beta)^z=\alpha\beta\cdot \alpha\beta\cdot…\cdot \alpha\beta(z \ раз)$

Тогда, по правилу перестановки множителей

$(\alpha\beta)^z=\alpha\cdot \alpha\cdot…\cdot \alpha(z \ раз)\cdot \beta\cdot\beta\cdot…\cdot \beta(z \ раз)=\alpha^z\cdot \beta^z$

Формула 4: $(\alpha^z)^k=\alpha^{zk}$

Доказательство.

По определению 1, будем иметь

$(\alpha^z)^k=\alpha^z\cdot \alpha^z\cdot…\cdot \alpha^z (k \ раз)$

В свою очередь

$\alpha^z=\alpha\cdot \alpha \cdot…\cdot \alpha(z \ раз)$

Тогда будем получать, что

$(\alpha^z)^k={\alpha \cdot \alpha \cdot…\cdot \alpha(z \ раз) }\cdot…\cdot {\alpha\cdot \alpha\cdot…\cdot \alpha(z \ раз) }(k \ раз)=\alpha\cdot \alpha\cdot…\cdot \alpha(zk \ раз)=\alpha^{zk}$

Формула 5: $\frac{\alpha^z}{\beta^z} =(\frac{\alpha}{\beta})^z$

Доказательство.

$\frac{\alpha^z}{\beta^z} =\alpha^z\cdot \beta^{-z}$

По формуле 4, имеем

$\frac{\alpha^z}{\beta^z} =\alpha^z\cdot \beta^{-z}=\alpha^z\cdot (\beta^{-1})^z=\alpha^z\cdot (\frac{1}{\beta})^z$

По формуле 3, имеем

$\frac{\alpha^z}{\beta^z} =\alpha^z\cdot (\frac{1}{\beta})^z=(\frac{\alpha}{\beta})^z$

Все эти формулы справедливы также и для рациональных и для иррациональных показателей степеней и также являются их свойствами. Поэтому отдельно мы их рассматривать и доказывать не будем. Также в рамках этой темы будет полезно рассмотреть таблицы степеней, которые здесь мы приводить не будем.

Примеры задач

Пример 1

Найти:

а) $2^2\cdot 2^3-\frac{3^5}{3^3}$

б) $(2^2)^2+\frac{8^4}{4^2}$

в) $8^{\frac{2}{3}}+0^π$

Решение.

а) По свойствам 1 и 2 степеней, получаем:

$2^2\cdot 2^3-\frac{3^5}{3^3} =2^5-3^2=32-9=23$

б) По свойствам 2, 4 и 5, получаем:

$(2^2)^2+\frac{8^4}{4^2}=4^2+\frac{2^{12}}{2^4}=16+2^8=16+256=272$

в) По определению 2, получаем:

$8^{\frac{2}{3}}+0^π=\sqrt[3]{8^2 }+0=2^2=4$

Пример 2

Упростить:

$\frac{\beta-1}{\beta^{\frac{3}{4}}+\beta^{\frac{1}{2}}}\cdot \frac{\beta^{\frac{1}{2}}+\beta^{\frac{1}{4}}}{\beta^{\frac{1}{2}}+1}\cdot \beta^{\frac{1}{4}}+1$

Решение.

Используя определение 2 степени, а также свойство 1 степеней, будем получать:

$\frac{\beta-1}{\beta^{\frac{3}{4}}+\beta^{\frac{1}{2}}}\cdot \frac{\beta^{\frac{1}{2}}+\beta^{\frac{1}{4}}}{\beta^{\frac{1}{2}}+1}\cdot \beta^{\frac{1}{4}}+1=\frac{\beta-1}{\beta^{\frac{1}{2}}(\beta^{\frac{1}{4}}+1) }\cdot \frac{\beta^{\frac{1}{4}}(\beta^{\frac{1}{4}}+1)}{\beta^{\frac{1}{2}}+1}\cdot \beta^{\frac{1}{4}}+1=\frac{\beta-1}{\beta^{\frac{1}{2}}} \cdot \frac{\beta^{\frac{1}{2}}}{\beta^{\frac{1}{2}}+1}+1=\frac{(\beta^{\frac{1}{2}}-1)(\beta^{\frac{1}{2}}+1)}{\beta^{\frac{1}{2}}+1}+1=\beta^{\frac{1}{2}}-1+1=\sqrt{\beta}$

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис