Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Производная от умножения двух чисел

Теорема о производной произведения функций

Нахождение производной функции называют дифференцированием. Чтобы научиться находить производные, необходимо знать правила дифференцирования. Они связаны с арифметическими действиями, а именно включают в себя правила производных от суммы функций, произведения двух функций и отношения двух функций. В этой статье рассмотрим, как находить производные от умножения двух чисел.

Производная от умножения двух чисел находится по следующему правилу дифференцирования: $(u\cdot v)' = u'v + uv'$. Словесно это правило объясняется в теореме о производной произведения функций.

Если в т. $x$ функции $f(x)$ и $g(x)$ имеются производные, то в точке $x$ произведение этих функций имеет производную, которая равна сумме произведений одной из данных функций и производной другой.

$(f(x)g(x))'=f(x)g('(x)+f'(x)g(x).$

Для упрощения этой записи в правиле о произведении вместо $f(x)$ используется $u$, а вместо $g(x)$ - $v$.

Приведём доказательство.

Положим $y=f(x)g(x)$.

$y+\Delta y=(f(x)+\Delta f(x))(g(x)+\Delta g(x)).$

$\Delta y=(f(x)+\Delta f(x))(g(x)+\Delta g(x))-f(x)g(x)=f(x)g(x)+f(x)\Delta g(x)+\Delta f(x)g(x)+\Delta f(x)\Delta g(x)=f(x)\Delta g(x)+g(x)\Delta f(x)+\Delta f(x)\Delta g(x).$

$\frac{\Delta y}{\Delta x}=\frac{f(x)\Delta g(x)}{\Delta x}+\frac{\Delta f(x)g(x)}{\Delta x}+\frac{\Delta f(x)\Delta g(x)}{\Delta x}.$

$\lim\limits_{x\to 0} \frac{\Delta y}{\Delta x}=f(x)\lim\limits_{x\to 0}\frac{\Delta g(x)}{\Delta x}+g(x)\lim\limits_{x\to 0}\frac{\Delta f(x)}{\Delta x}+\lim\limits_{x\to 0}\frac{\Delta f(x)}{\Delta x}\lim\limits_{x\to 0}\Delta g(x)=f(x)g'(x)+g(x)f'(x)+f'(x)\cdot 0.$

Формула доказана.

Теорема распространяется на произведение любого количества дифференцируемых функций. Для примера запишем правило для трёх множителей, используя упрощённую запись:

$(u\cdot v\cdot w)'=uvw'+uv'w+u'vw.$

Если положить $g(x)=k$ и воспользоваться теоремой о производной произведений, то получим равенство $(k(f(x))'=kf'(x).$ Полученное равенство сформулируем словесно в следствие: постоянный множитель можно выносить за знак производной.

«Производная от умножения двух чисел» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Примеры вычислений

Рассмотрим примеры с производной функции с умножением двух чисел.

Пример 1

Условие. Найти $y'$ если $y=(x+6)(x-7).$

Решение. По теореме получаем: $y'=(x+6)(x-7)'+(x+6)'(x-7)=(x+6)(1-0)+(1+0)(x-7)=(x+6)+(x-7)=x+6+x-7=2x-1.$

Ответ. $y'=2x-1.$

Пример 2

Условие. Найти производную $y=x^4\cdot \sin x$.

Решение. Наша функция содержит произведение двух функций $y=x^4$ и $y = \sin x$. По правилу $(u\cdot v)' = u'v + uv'$ получаем

$y'=(x^4 \cdot \sin x)'=(x^4)' \cdot \sin x + x^4\cdot(\sin x)' $.

Чтобы продолжить, необходимо вспомнить следующие формулы: $(x^n)'=n\cdot x^{n-1}$ и $(\sin x)'=\cos x$.

Можем получить ответ: $y'= (x^4)' \cdot \sin x + x^4\cdot(\sin x)'=4x^3\cdot \sin x +x^4\cdot\cos x$.

Выполним пример задания по решению уравнения.

Пример 3

Условие. Нужно решить уравнение $f'(x) - 2x\ln x=x^2-2$, где $f(x)=x^2\cdot\ln x$.

Решение. Для начала найдём производную. Для этого напомним ещё одну формулу производной: $(\ln x)'=\frac{1}{x}$.

$f'(x)=2x\ln x + x^2\cdot\frac{1}{x}=2x\ln x +x.$

Получаем уравнение вида:

$2x\ln x + x-2x\ln x=x^2-2$.

Сокращаем: $x^2-x-2=0$. Получается $x_1=-1$ и $x_2=2$. Корень $-1$ нам не подходит, так как область определения функции: $x>0$.

Имеем в ответе только корень $2$.

Рассмотрим пример нахождения второй производной функции с умножением двух чисел.

Пример 4

Условие. Найти вторую производную функции $y=x6^x$.

Решение. Производная второго порядка или вторая производная - это производная от первой производной. В свою очередь, первая производная получается из продифференцированной функции. Формула второй производной: $y''=(y')'$.

Вспомним следующие формулы производных элементарных функций: $(x^n)'=n\cdot x^{n-1}$ и $(a^x)'=a^x\ln a$.

Теперь приступаем непосредственно к нахождению первой производной: $y'=(x6^x)'=1\cdot 6^x + x\cdot 6^x \ln 6 = 6^x (1+x\ln 6)$.

Далее перейдём к нахождению второй производной: $y''=(6^x(1+x\ln 6))'$.

Необходимо вспомнить правило дифференциорвания сложения $(u+v)'=u'+v'$ и формулу производной элементарной функции $(c)'=0$.

Промежуточный шаг: $(1+(x\ln 6))'=0+x'\ln6 + x(\ln6)'=0+0+\ln 6$.

В итоге:

$y'' = 6^x\ln 6\cdot(1+x\ln6)+6^x\cdot(0+\ln 6)=6^x\ln 6\cdot(1+x\ln6) +6^x\ln 6 =6^x\ln 6 + 6^x\ln 6(\ln 6)+6^x\ln 6=6^x\ln 6(2+x\ln6).$

Ответ. $y'=6^x\ln 6(2+x\ln6).$

Таким образом, мы рассмотрели теорему о производной произведения функций и решили несколько примеров.

Дата последнего обновления статьи: 17.04.2024
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot