Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Пирамида. Виды пирамид

Понятие пирамиды

Определение 1

Геометрическая фигура, образованная многоугольником и точкой, не лежащей в плоскости, содержащей этот многоугольник, соединенной со всеми вершинами многоугольника называется пирамидой (рис. 1).

Пирамида

Многоугольник, из которого составлена пирамида, называется основанием пирамиды, получаемые при соединение с точкой треугольники - боковыми гранями пирамиды, стороны треугольников -- сторонами пирамиды, а общая для всех треугольников точка-- вершиной пирамиды.

Виды пирамид

В зависимости от количества углов в основании пирамиды ее можно назвать треугольной, четырехугольной и так далее (рис. 2).



Рисунок 2.

Еще один вид пирамид -- правильная пирамида.

Определение 2

Пирамида, в основании которой лежит правильный многоугольник и высота пирамиды падает в его центр называется правильной пирамидой (рис. 3).

Правильная пирамида

Рисунок 3. Правильная пирамида

Введем и докажем свойство правильной пирамиды.

Все боковые грани правильной пирамиды являются равнобедренными треугольниками, которые равны между собой.

Доказательство.

Рассмотрим правильную nугольную пирамиду с вершиной S высотой h=SO. Опишем вокруг основания окружность (рис. 4).



Рисунок 4.

Рассмотрим треугольник SOA. По теореме Пифагора, получим

AS=AO2+SO2=R2+h2

Очевидно, что так будет определяться любое боковое ребро. Следовательно, все боковые ребра равны между собой, то есть все боковые грани -- равнобедренные треугольники. Докажем, что они равны между собой. Так как основание -- правильный многоугольник, то основания всех боковых граней равны между собой. Следовательно, все боковые грани равны по III признаку равенства треугольников.

Теорема доказана.

«Пирамида. Виды пирамид» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ

Введем теперь следующее определение, связанное с понятием правильной пирамиды.

Определение 3

Апофемой правильной пирамиды называется высота её боковой грани.

Очевидно, что по теореме один все апофемы равны между собой.

Теорема 2

Площадь боковой поверхности правильной пирамиды определяется как произведение полупериметра основания на апофему.

Доказательство.

Обозначим сторону основания nугольной пирамиды через a, а апофему через d. Следовательно, площадь боковой грани равна

s=12ad

Так как, по теореме 1, все боковые стороны равны, то

Sбок=12and=Pосн2d

Теорема доказана.

Еще один вид пирамиды -- усеченная пирамида.

Определение 4

Если через обычную пирамиду провести плоскость, параллельную её основанию, то фигура, образованная между этой плоскостью и плоскостью основания называется усеченной пирамидой (рис. 5).

Усеченная пирамида

Рисунок 5. Усеченная пирамида

Боковыми гранями усеченной пирамиды являются трапеции.

Теорема 3

Площадь боковой поверхности правильной усеченной пирамиды определяется как произведение суммы полупериметров оснований на апофему.

Доказательство.

Обозначим стороны оснований nугольной пирамиды через a и b соответственно, а апофему через d. Следовательно, площадь боковой грани равна

s=12(a+b)d

Так как все боковые стороны равны, то

Sбок=12(a+b)nd=Pосн2d

Теорема доказана.

Пример задачи

Пример 1

Найти площадь боковой поверхности усеченной треугольной пирамиды, если она получена из правильной пирамиды со стороной основания 4 и апофемой 5 путем отсечения плоскостью, проходящей через среднюю линию боковых граней.

Решение.

По теореме о средней линии получим, что верхнее основание усеченной пирамиды равно 412=2, а апофема равна 512=2,5.

Тогда, по теореме 3, получим

Sбок=12(12+6)52=904=22,5

Ответ: 22,5.

Дата последнего обновления статьи: 27.04.2024
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot
AI Assistant