Разместить заказ
Вы будете перенаправлены на Автор24

Окружность

8-800-775-03-30 support@author24.ru
Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис
Окружность

Определение окружности

Определение 1

Окружность -- геометрическая фигура, состоящая из всех точек, расположенных на равном расстоянии от заданной точки.

Определение 2

В рамках определения 1, заданная точка называется центром окружности.

Определение 3

Отрезок, соединяющий центр окружности с любой ее точкой называется радиусом окружности $(r)$ (Рис. 1).

Окружность с центром в точке $O$ и радиусом $r$

Рисунок 1. Окружность с центром в точке $O$ и радиусом $r$

Определение 4

Отрезок, соединяющий две любые точки окружности, называется хордой.

Определение 5

Хорда, проходящая через центр окружности, называется диаметром $(d)$.

\[d=2r\]

Взаимное расположение прямой и окружности

Окружность имеет три возможных взаимных расположений относительно прямой:

  1. Если расстояние от центра окружности до прямой меньше радиуса, то прямая имеет две точки пересечения с окружностью.

  2. Если расстояние от центра окружности до прямой равно радиусу, то прямая имеет две точки пересечения с окружностью.

  3. Если расстояние от центра окружности до прямой больше радиуса, то прямая имеет две точки пересечения с окружностью.

Уравнение окружности

Выведем уравнение окружности в декартовой системе координат $xOy$. Пусть центр окружности $C$ имеет координаты $(x_0,y_0)$, а радиус окружности равен $r$. Пусть точка $M$ с координатами $(x,y)$ -- произвольная точка этой окружности (рис. 2).

Окружность в декартовой системе координат

Рисунок 2. Окружность в декартовой системе координат

Расстояние от центра окружности до точки $M$ вычисляется следующим образом

Но, так как $M$ лежит на окружности, то по определению 3, получаем $CM=r$. Тогда получим следующее

Уравнение (1) и есть уравнение окружности с центром в точке $(x_0,y_0)$ и радиусом $r$.

В частности, если центр окружности совпадает с началом координат. То уравнение окружности имеет вид

Длина окружности

Выведем формулу длины окружности $C$ через её радиус. Для этого рассмотрим две окружности с длинами $C$ и $C'$ и радиусами $R$ и $R'$. Впишем в ним правильные $n-угольники$ с периметрами $P$ и $P'$ и длинами сторон $a$ и $a'$ соответственно. Как нам известно, сторона вписанного -угольника равна

Тогда, получим

Следовательно

Неограниченно увеличивая количество сторон правильных многоугольников $n$ получим, что

Отсюда, получаем

То есть

Получили, что отношение длины окружности к её диаметру постоянное число для любой окружности. Эту константу принято обозначать числом $\pi \approx 3,14$. Таким образом, получим

Формула (2) и есть формула для вычисления длины окружности.

Пример задачи на понятие окружность

Пример 1

Найти уравнение окружности с центром в точке $(1,\ 2)$. Проходящей через начало координат и найти длину данной окружности.

Решение.

Найдем сначала уравнение данной окружности. Для этого будем использовать формулу (1). Так как центр окружности лежит в точке $(1,\ 2)$, получим

\[{(x-1)}^2+{(y-2)}^2=r^2\]

Найдем радиус окружности как расстояние от точки $(1,\ 2)$ до точки $(0,0)$

\[r=\sqrt{{(1-0)}^2+{(2-0)}^2}=\sqrt{5}\]

Получаем, уравнение окружности имеет вид:

\[{(x-1)}^2+{(y-2)}^2=5\]

Найдем длину окружности по формуле (2). Получим

\[C=2\pi r=10\pi \]

Ответ: ${(x-1)}^2+{(y-2)}^2=5$, $C=10\pi $