Изоклина
кривая, в каждой точке которой наклон поля направлений один и тот же
ряд (биномиальный, Маклорена, Тейлора, Фурье и т.д.) производится с целью вычисления значений или исследования функции с помощью рядов; для того чтобы функция f на множестве X могла быть разложена в степенной ряд, необходимо, чтобы f имела на множестве X непрерывные производные всех порядков; если функция f может быть разложена в степенной ряд, то лишь единственным образом
(x)^{k} +r_{n} (x,x_{0} )\]
Разложение в ряд Маклорена элементарных функций
\[e^{x} =1+\frac{x}{1!...
x} =\frac{1}{2} +\frac{1}{2} \cdot \cos 2x\]
По формуле разложения элементарных функций в ряд Маклорена...
\]
Пример 2
Найти ряд Маклорена функции
\[y(x)=e^{t-1} \]
Решение....
Пусть x = t 2, тогда функция примет вид:
\[y(x)=(1+x)^{-1} \]
Распишем функцию в ряд
\[(1+x)^{-1}...
Выпишем формулу разложения элементарной функции
\[\sin x=\frac{x}{1!} -\frac{x^{3} }{3!}
В статье установлено, что дополнительный ряд Тейлора для той же функции, но записанной, как функция обратного аргумента, снимает все проблемы адекватного отображения функции при помощи степенного ряда. Показано, что это обстоятельство открывает совершенно новые возможности решения задач, связанных с рядами, как в фундаментальных, так и в прикладных вопросах.
Рассмотрим важную задачу, которая решается в теории функциональных рядов: по заданной функции найти...
сходящийся функциональный ряд того или иного типа, сумма которого в области сходимости равнялась бы заданной...
функции....
Такая задача называется разложением функции в ряд, например, степенной....
\, x^{n+1} .\] Формула Маклорена является разложением функции $f(x)$ в виде многочлена по степеням х.
кривая, в каждой точке которой наклон поля направлений один и тот же
термин классической теории вероятностей, при аксиоматическом подходе определяемый как любое разбиение пространства элементарных событий на попарно несовместимые случайные события, которые называются исходами испытания
прямая эллиптического пространства, отстоящая от данной прямой на постоянном расстоянии
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве