Геометрический ряд
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
если целое число a не делится на простое число p, то справедливо сравнение ap−1 ≡ 1 (mod p)
В статье предлагается доказательство теоремы Ферма. Вместо целых чисел a,b,c в теореме Ферма рассматривается треугольник с длинами сторон a,b,c . Доказано, что в случае прямоугольного и тупоугольного треугольников уравнение Ферма решений не имеет. При рассмотрении случая, когда a,b,c являются сторонами остроугольного треугольника, доказано, что уравнение Ферма не имеет целых решений при p>2.
Уайлс доказал Великую теорему Ферма на 130 страницах. По мнению некоторых известных математиков, это доказательство «крайне абстрактно». Эту теорему можно доказать на уровне знаний средней школы и значительно меньшим объемом доказательств.
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
дробная часть десятичного логарифма положительного числа
эрмитова матрица
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве