Разместить заказ
Вы будете перенаправлены на Автор24

Средняя линия трапеции

Все предметы / Математика / Векторы / Средняя линия трапеции

Понятие средней линии трапеции

Для начала вспомним, какую фигуру называют трапецией.

Определение 1

Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

При этом параллельные стороны называются основаниями трапеции, а не параллельные -- боковыми сторонами трапеции.

Определение 2

Средняя линия трапеции -- это отрезок, соединяющий середины боковых сторон трапеции.

Теорема о средней линии трапеции

Теперь введем теорему о средней линии трапеции и докажем её векторным методом.

Теорема 1

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство.

Пусть нам дана трапеция $ABCD$ с основаниями $AD\ и\ BC$. И пусть $MN$ -- средняя линия этой трапеции (рис. 1).

Средняя линия трапеции

Рисунок 1. Средняя линия трапеции

Докажем, что $MN||AD\ и\ MN=\frac{AD+BC}{2}$.

Рассмотрим вектор $\overrightarrow{MN}$. Используем далее правило многоугольника для сложения векторов. С одной стороны получим, что

С другой стороны

Сложим два последних равенства, получим

Так как $M$ и $N$ - середины боковых сторон трапеции, то будем иметь

Получаем:

Следовательно

Из этого же равенства (так как $\overrightarrow{BC}$ и $\overrightarrow{AD}$ сонаправлены, а, следовательно, коллинеарны) получаем, что $MN||AD$.

Теорема доказана.

Примеры задач на понятие средней линии трапеции

Пример 1

Боковые стороны трапеции равны $15\ см$ и $17\ см$ соответственно. Периметр трапеции равен $52\ см$. Найти длину средней линии трапеции.

Решение.

Обозначим среднюю линию трапеции через $n$.

Сумма боковых сторон равна

\[15\ см+17\ см=32\ см\]

Следовательно, так как периметр равен $52\ см$, сумма оснований равна

\[52\ см-32\ см=20\ см\]

Значит, по теореме 1, получаем

\[n=\frac{20\ см}{2}=10\ см\]

Ответ: $10\ см$.

Готовые работы на аналогичную тему

Пример 2

Концы диаметра окружности удалены от его касательной соответственно на $9$ см и $5$ см. Найти диаметр этой окружности.

Решение.

Пусть нам дана окружность с центром в точке $O$ и диаметром $AB$. Проведем касательную $l$ и построим расстояния $AD=9\ см$ и $BC=5\ см$. Проведем радиус $OH$ (рис. 2).



Рисунок 2.

Так как $AD$ и $BC$ - расстояния до касательной, то $AD\bot l$ и $BC\bot l$ и так как $OH$ -- радиус, то $OH\bot l$, следовательно, $OH|\left|AD\right||BC$. Из этого всего получаем, что $ABCD$ - трапеция, а $OH$ - ее средняя линия. По теореме 1, получаем

\[OH=\frac{AD+BC}{2}=\frac{9\ см+5\ см}{2}=7\ см.\]

Значит

\[d=2OH=2\cdot 7\ см=14\ см.\]

Ответ: $14$ см.

Пример 3

Доказать, что средняя линия трапеции проходит через середину произвольной диагонали данной трапеции.

Доказательство.

Пусть нам дана трапеция $ADCD$ со средней линией $MN$. Рассмотрим диагональ $AC$. Обозначим точкой $K$ - точку пересечения средней линии с этой диагональю (Рис. 3).



Рисунок 3.

Докажем, что $AK=KC$.

Так как $MN$ - средняя линия трапеции, то по теореме 1 $MN||BC$. Следовательно, $AM=NB$ и $MK||BC$. Тогда, по теореме о средней линии треугольника, получим что $MK$ - средняя линия треугольника $ABC$. Значит $AK=KC$.

ч. т. д.

Сообщество экспертов Автор24

Автор этой статьи

Автор статьи

Александр Мельник

Эксперт по предмету «Математика»

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис