Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Дифференциал функции

Что такое дифференциал функции

Если дана дифференцируемая функция $y = f(x)$, то ее приращение

Где $\alpha \to 0$ при $\Delta x\to 0$.

При $\Delta x\to 0$ величина $\alpha $$\Delta $х - бесконечно малая порядка выше, чем $\Delta $х. Из равенства $\Delta $y следует, что приращение функции, которая имеет производную в точке х, не равную нулю, может быть представлено в виде суммы двух слагаемых. В первое слагаемое f`(х) приращение $\Delta $х является приращением первой степени. Именно это слагаемое является главной частью приращения функции и называется ее дифференциалом.

Определение

Дифференциалом функции называется произведение производной этой функции на приращение независимой переменной.

Дифференциал функции обозначается dy и имеет запись вида:

$dy = f `(x) \Delta х$

Что такое дифференциал независимой переменной

Определение

Дифференциалом независимой переменной называется ее приращение dx = $\Delta $х.

$\Delta $y = dy + $\alpha $$\Delta $х

Второе слагаемое выражения$\Delta y=f'(x)\Delta x+\alpha \Delta x$ при $\Delta x\to 0$ - бесконечно малая высшего порядка величина. Таким образом, разность $\Delta $y -- dy между приращением функции и ее дифференциалом равная $\alpha $$\Delta $х -- бесконечно малая величина высшего по сравнению с $\Delta $х порядка.

Для вычисления дифференциала функции необходимо задать начальное значение независимой переменной x и ее приращение. Если приращение слишком мало, а f `(x) не равно нулю, то величина $\alpha $$\Delta $х значительно меньше дифференциала функции, причем тем меньше, чем меньше $\Delta $х.

Поэтому в ряде случаев вычисление приращения функции заменяется вычислением дифференциала функции с некоторым приближением. Дифференциал функции вычисляется проще, т.к. требует нахождения лишь ее производной для расчета произведения с независимой переменной:

\[\Delta y\approx dy\]

Поскольку

\[\Delta y=f(x+\Delta x)-f(x)\] \[dy=f'(x)\Delta x\]

Наращенное значение функции имеет вид:

\[f(x+\Delta x)-f(x)\approx f'(x)\Delta x\]

С помощью этой приближенной формулы можно находить приближенное значение функции в точке x + $\Delta $х ,близкой к х по известному значению функции.

Дифференцирование основных элементарных функций получается путем нахождения производной и добавления к ней переменной dx.

\[d(cu)=cdu\] \[d(u\pm v)=du\pm dv\] \[d(uv)=udv+vdu\] \[d\left(\frac{u}{v} \right)=\frac{vdu-udv}{v^{2} } \]
«Дифференциал функции» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти
Пример 1

Определить приращение и дифференциал функции y = x2 при переходе х от значения 2 к значению 2,03.

Решение.

  1. Определим приращение заданной функции при произвольных значениях х и $\Delta $х.
  2. \[dy=y'dx=2xdx\] \[\Delta y=(x+\Delta x)^{2} -x^{2} =x^{2} +2x\Delta x+\left(\Delta x\right)^{2} -x^{2} =2x\Delta x+\left(\Delta x\right)^{2} \]
  3. Найдем приращение аргумента.
  4. \[\Delta x=2,03-2=0,03\]
  5. Подставим числовые значения в равенство приращения функции
  6. \[\Delta y=2\cdot 2\cdot 0,03+\left(0,03\right)^{2} =0,12+0,0009\]
Пример 2

Показать, что при $\Delta x\to 0$ с точностью до бесконечно малой высшего порядка имеет место приближенное равенство

\[(1+\Delta x)^{n} \approx 1+n\Delta x\]

Решение.

Рассмотрим функцию $f(x) = x^n$. Тогда

\[\Delta y=(x+\Delta x)^{n} -x^{n} \] \[dy=nx^{n-1} \Delta x\]

Поскольку $\Delta y\approx dy$, то:

\[(x+\Delta x)^{n} -x^{n} \approx nx^{n-1} \Delta x\] \[(x+\Delta x)^{n} \approx x^{n} +nx^{n-1} \Delta x\]

Полагая, что х = 1, для достаточно малых приращений имеет место приближенное равенство

\[(1+\Delta x)^{n} \approx 1+n\Delta x\]

Формула, полученная в примере 2, широко используется для приближенных вычислений.

\[(1+\Delta x)^{n} \approx 1+n\Delta x\]

Например:

  1. Приближенно вычислить $(1,02)^3$
  2. Где $\Delta х = 0,03, n = 5$

    \[(1,02)^{3} \approx 1+0,02\cdot 3\]

    Где $\Delta $х = 0,03, n = 5

    \[(1,02)^{3} \approx 1,06\]
  3. Приближенно вычислить $\sqrt{1,005} $
  4. Где $\Delta х = 0,005, n =0,5$

    \[\sqrt{1,005} \approx 1+0,5\cdot 0,005\] \[\sqrt{1,005} \approx 1,0025\]
Пример 3

При нагревании объем твердого тела растет пропорционально кубу его линейного расширения. Если $\alpha $ -- коэффициент объемного расширения, а t -- температура, то имеет место формула

\[1+\beta t=(1+\alpha t)^{3} \]

Доказать, что

\[\beta \approx 3\alpha \]

Доказательство.

При малых $\alpha $

\[(1+\alpha t)^{3} \approx 1+3\alpha t\]

Значит, $1+\beta t=1+3\alpha t$ и $\beta \approx 3\alpha $

Дата последнего обновления статьи: 14.12.2023
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot