В аналитической геометрии часто требуется составить общее уравнение прямой по принадлежащей ей точке и вектору нормали к прямой.
Нормаль – синоним для слова перпендикуляр.
Общее уравнение прямой на плоскости выглядит как $Ax + By + C = 0$. Подставляя в него различные значениях $A$, $B$ и $C$, в том числе нулевые, можно определить любые прямые.
Можно выразить уравнение прямой и другим способом:
$y = kx + b$.
Это уравнение прямой с угловым коэффициентом. В нем геометрический смысл коэффициента $k$ заключается в угле наклона прямой по отношению к оси абсцисс, а независимого члена $b$ - в расстоянии, на которое прямая отстоит от центра координатной плоскости, т.е. точки $O(0; 0)$.
Рисунок 1. Варианты расположения прямых на координатной плоскости. Автор24 — интернет-биржа студенческих работ
Нормальное уравнение прямой можно выразить и в тригонометрическом виде:
$x \cdot \cos{\alpha} + y \cdot \sin{\alpha} - p = 0$
где $\alpha$ - угол между прямой и осью абсцисс, а $p$ - расстояние от начала координат до рассматриваемой прямой.
Возможны четыре варианта зависимости наклона прямой от величины углового коэффициента:
- когда угловой коэффициент положителен, направляющий вектор прямой идёт снизу вверх;
- когда угловой коэффициент отрицателен, направляющий вектор прямой идёт сверху вниз;
- когда угловой коэффициент равен нулю, описываемая им прямая параллельна оси абсцисс;
- для прямых, параллельных оси ординат, углового коэффициента не существует, поскольку тангенс 90 градусов является неопределенной (бесконечной) величиной.
Чем больше абсолютное значение углового коэффициента, тем круче наклонен график прямой.
Зная угловой коэффициент, легко составить уравнение графика прямой, если дополнительно известна точка, принадлежащая искомой прямой:
$y - y_0 = k \cdot (x - x_0)$
Таким образом, геометрически прямую на координатной всегда можно выразить с помощью угла и расстояния от начала координат. В этом и заключается смысл нормального вектора к прямой - самого компактного способа записи ее положения, если известны координаты хотя бы одной точки, принадлежащей этой прямой.
Вектором нормали к прямой, иначе говоря, нормальным вектором прямой, принято называть ненулевой вектор, перпендикулярный рассматриваемой прямой.
Для каждой прямой можно найти бесконечное множество нормальных векторов, равно как и направляющих векторов, т.е. таких, которые параллельны этой прямой. При этом все нормальные векторы к ней будут коллинеарными, хотя и не обязательно сонаправлены.
Обозначив нормальный вектор прямой как $\vec{n}(n_1; n_2)$, а координаты точки как $x_0$ и $y_0$, можно представить общее уравнение прямой на плоскости по точке и вектору нормали к прямой как
$n_1 \cdot (x - x_n) + n_2 \cdot (y - y_0) = 0$
Таким образом, координаты вектора нормали к прямой пропорциональны числам $A$ и $B$, присутствующим в общем уравнении прямой на плоскости. Следовательно, если известно общее уравнение прямой на плоскости, то можно легко вывести и вектор нормали к прямой. Если прямая, задана уравнением в прямоугольной системе координат
$Ax + By + C = 0$,
то нормальный вектор описывается формулой:
$\bar{n}(A; B)$.
При этом говорят, что координаты нормального вектора "снимаются" с уравнения прямой.
Нормальный к прямой вектор и ее направляющий вектор всегда ортогональны по отношению друг к другу, т.е. их скалярные произведения равны нулю, в чем легко убедиться, вспомнив формулу направляющего вектора $\bar{p}(-B; A)$, а также общее уравнение прямой по направляющему вектору $\bar{p}(p_1; p_2)$ и точке $M_0(x_0; y_0)$:
$\frac{x - x_0}{p_1} = \frac{y - y_0}{p_2}$
В том, что вектор нормали к прямой всегда ортогонален направляющему вектору к ней можно убедиться с помощью скалярного произведения:
$\bar{p} \cdot \bar{n} = -B \cdot A + A \cdot B = 0 \implies \bar{p} \perp \bar{n}$
Всегда можно составить уравнение прямой, зная координаты принадлежащей ей точки и нормального вектора, поскольку направление прямой следует из его направления. Описав точку как $M(x_0; y_0)$, а вектор как $\bar{n}(A; B)$, можно выразить уравнение прямой в следующем виде:
$A(x - x_0) + B(y - y_0) = 0$
Составить уравнение прямой по точке $M(-1; -3)$ и нормальному вектору $\bar(3; -1)$. Вывести уравнение направляющего вектора.
Для решения задействуем формулу $A \cdot (x - x_0) + B \cdot (y - y_0) = 0$
Подставив значения, получаем:
$3 \cdot (x - (-1)) - (-1) \cdot (y - (-3)) = 0$ $3 \cdot (x + 1) - (y + 3) = 0$ $3x + 3 - y - 3 = 0$ $3x - y = 0$
Проверить правильность общего уравнения прямой можно "сняв" из него координаты для нормального вектора:
$3x - y = 0 \implies A = 3; B = -1 \implies \bar{n}(A; B) = \bar{n}(3; -1),$
Что соответствует числам исходных данных.
Подставив реальные значения, проверим, удовлетворяет ли точка $M(-1; -3)$ уравнению $3x - y = 0$:
$3 \cdot (-1) - (-3) = 0$
Равенство верно. Осталось лишь найти формулу направляющего вектора:
$\bar{p}(-B; A) \implies \bar{p}(1; 3)$
Ответ: $3x - y = 0; \bar{p}(1; 3).$