Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Метод Жордана-Гаусса

Определение 1

Метод Жордана-Гаусса – это метод решения линейных уравнений путём полного исключения неизвестных. Данный метод является модификацией метода Гаусса, только в случае метода Жордана-Гаусса элементарные преобразования проводятся дальше.

История возникновения метода

Исторически метод Гаусса возник достаточно давно. Решение систем уравнений подобным способом было изложено ещё в древнем китайском математическом трактате под названием “Математика в девяти книгах”, представляющим собой разрозненное собрание решений различных прикладных математических задач.

Некоторые главы этого трактата датируются 150 г. до н.э.

В Европе же первым, кто занимался изучением этого метода, был Исаак Ньютон. Учёный изучил много книг по алгебре того времени и обнаружил, что ни в одной из них не предложено решений систем уравнений со множеством переменных, после чего он предложил свой способ решения.

Его работа на эту тему была опубликована в 1707 г., в это время Ньютон уже больше не работал в Кембридже. После этого в течение века метод появился во многих книгах и учебниках по алгебре.

В 1810 году известный немецкий учёный и математик К. Ф. Гаусс опубликовал свои дополнения к этому методу вместе с другими своими работами по линейной алгебре, после чего метод с получением верхней треугольной матрицы стал широко известен под его именем.

Затем в в конце XIX века геодезист и математик Жордан разработал на основе метода Гаусса свой усовершенствованный вариант с получением диагональной матрицы.

Примечательно, что он сделал это практически одновременно с другим учёным, тем не менее, в названии усовершенствованного метода отразилось только имя геодезиста Жордана.

Практическое применение метода Жордана-Гаусса

Метод Жордана и Гаусса используется для решения систем линейных уравнений, а также для получения обратных матриц и нахождения ранга матрицы. Также этот метод весьма полезен и часто применяем для решения технических задач со множеством неизвестных.

«Метод Жордана-Гаусса» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Для решения получаемых на основе технических задач систем уравнений выделяют наибольшие по модулю переменные для уменьшения ошибки погрешности, а затем производят поочередное удаление лишних переменных из строчек матрицы.

Для решения технических задач методом Жордана-Гаусса также используются реализации на различных языках программирования, они позволяют получать более точные значения переменных.

Объяснение сущности метода Жордана-Гаусса

Обычно матрица, полученная с помощью метода Жордана-Гаусса выглядит как диагональ с единицами, вот например:

$A = \begin{array}{ccc|c} 1& 0 &0 &a_1 \\ 0& 1 &0 &a_2 \\ 0 & 0 & 1 &a_3 \end{array}$

Разница между методом Гаусса и методом Жордана-Гаусса состоит в том, что в случае метода Гаусса необходимо привести только нижнюю часть матрицы к нулям, тогда как в случае метода Жордана-Гаусса в каждой строчке матрицы остаётся лишь один коэффициент при переменной.

С помощью метода Гаусса можно найти базисное и общее решение системы уравнений, также как и с помощью метода Жордана-Гаусса.

Базисное решение системы уравнений – это решение, при котором все свободные переменные равны нулю.

Общее решение системы уравнений – это решение, при котором основные переменные выражаются через свободные переменные.

Также методом Жордана-Гаусса производят получение обратных матриц.

Получение обратной матрицы методом Жордана-Гаусса

Обратная матрица – это такая матрица, при умножении на которую из исходной матрицы получается единичная матрица. Обратные матрицы существуют только для квадратных и невырожденных матриц.

Сущность метода нахождения обратной матрицы состоит в том, чтобы записать рядом исходную матрицу и единичную, и затем, производить элементарные преобразования по методу Жордана-Гаусса одновременно к двум матрицам.

В результате мы получим диагональную единичную матрицу из исходной, а рядом с ней будет её обратная матрица, полученная из единичной матрицы.

Получение обратной матрицы методом Жордана-Гаусса.

Исходная матрица:

$\begin{array}{cc} 1& 2 \\ 3 & 4 \\ \end{array}$

Запишем рядом единичную матрицу и исходную:

$ \begin{array}{cc|cc} 1& 2 & 1& 0\\ 3 & 4& 0 & 1 \\ \end{array}$

Теперь к нижней строчке прибавляем верхнюю строчку, умноженную на $-3$:

$ \begin{array}{cc|cc} 1& 2 & 1 & 0\\ 0 & -2 & -3 & 1 \\ \end{array}$

Прибавляем к верхней строчке нижнюю:

$ \begin{array}{cc|cc} 1& 0 & -2 & 1\\ 0 & -2 & -3 & 1 \\ \end{array}$

Делим вторую строку на $-2$:

$ \begin{array}{cc|cc} 1& 0 & -2 & 1\\ 0 & 1& 3/2 & -1/2 \\ \end{array}$

Обратной исходной будет следующая матрица:

$\begin{array}{cc} -2& 1 \\ 3/2 & -1/2 \\ \end{array}$

Чтобы решить СЛАУ методом Жордана-Гаусса, к матрице возможно применить те же элементарные преобразования, что и в случае решения методом Гаусса, а именно:

  • умножение любой строчки на константу, отличную от нуля;
  • вычитание или сложение двух любых строчек;
  • перестановка любых двух строчек местами;
  • удаление строчек, состоящих из одних нулей;
  • удаление лишних строк, пропорциональных друг другу.

Соответственно, чтобы решить систему линейных уравнений методом Гаусса-Жордана, необходимо выполнить ряд преобразований над получающейся после применения метода Гаусса матрицей.

Общий алгоритм решения системы уравнений методом Жордана-Гаусса

  1. Выбирают строчку, в которой первый элемент имеет ненулевое значение максимально приближенное к единице и ставят её на место первой строки. Такой элемент называют также “разрешающим”
  2. Приводят значение верхней левой ячейки к $1$ посредством деления или умножения всей верхней строки.
  3. Из оставшихся строчек вычитают верхнюю строчку, помноженную на коэффициент, стоящий на первом месте в строчке, над которой ведутся преобразования.
  4. Далее тоже самое проделывают необходимое количество раз с целью получения треугольной матрицы, в которой все элементы ниже главной диагонали, проходящей слева направо сверху вниз, равны нулю. Последовательность действий, описанных выше, называется прямым ходом преобразования матрицы.
  5. После получения треугольной матрицы затем вычитают последнюю строку из предпоследней, помножив последнюю строку на элемент из предпоследней. На данном этапе в последней и предпоследней строке остаётся по одному коэффициенту. Эту операцию повторяют пока не дойдут до верха матрицы, получив диагональную матрицу. Эти действия носят название обратного хода преобразования матрицы.
Пример 1

Задача. Решить систему линейных уравнений методом Гаусса-Жордана

$\begin{cases} 3x_1 + 2x_2 – 5x_3 = -1 \\ 2x_1 – x_2 + 3x_3 = 13 \\ x_1 + 2x_2 – x_3 = 9 \end{cases}$

Теперь запишем эту систему в виде расширенной матрицы:

$ \begin{array}{ccc|c} 3& 2 & -5 & -1\\ 2 & -1& 3 & 13 \\ 1 & 2 & -1 & 9 \\ \end{array}$

Путём элементарных преобразований методом Гаусса получим следующую матрицу:

$ \begin{array}{ccc|c} 1& 2 & -1 & 9\\ 0 & 1& -1 & 1 \\ 0 & 0& 1 & 4 \\ \end{array}$

Теперь начнём использовать обратный ход и преобразуем эту матрицу чтобы получить диагональ из единиц.

Сначала к средней и верхней строчкам необходимо добавить последнюю строчку, получается:

$ \begin{array}{ccc|c} 1& 2 & 0 & 13\\ 0 & 1& 0 & 5 \\ 0 & 0 & 1 & 4 \\ \end{array}$

А теперь к верхней строчке прибавим среднюю, умноженную на $-2$:

$ \begin{array}{ccc|c} 1& 0 & 0 & 3\\ 0 & 1& 0 & 5 \\ 0 & 0 & 1 & 4 \\ \end{array}$

Получаем следующую систему:

$\begin{cases} x_1 = 3 \\ x_2 = 5 \\ x_3 = 4 \end{cases}$

Пример 2

Решить систему линейных уравнений методом Жордана-Гаусса:

$\begin{cases} x_1 – 8x_2 + x_3 - 9x_4 = 6 \\ x_1 – 4x_2 – x_3 - 5x_4 = 2 \\ -3x_1 + 2x_2 + 8x_3 + 5x_4 = 4 \\ 5x_1 + 2x_2 + 2x_3 + 3x_4 = 12 \end{cases}$

Сначала запишем систему в матричном виде:

$ \begin{array}{cccc|c} 1& -8 & 1 & -9 & 6 \\ -1 & -4& -1 & -5 & 2 \\ -3 & 2 & 8 & 5 & 4 \\ 5& 2 & 2 & 3 & 12 \\ \end{array}$

Затем преобразуем до треугольной:

К самой верхней строчке прибавляем вторую строчку, домноженную на $-1$. К третьей строчке прибавляем утроенную самую верхнюю строчку, затем к последней строчке прибавляем самую верхнюю, помноженную на $-5$:

$ \begin{array}{cccc|c} 1& -8 & 1 & -9 & 6 \\ 0 & 4& -2 & 4 & -4 \\ 0 & -22 & 11 & -22 & 22 \\ 0& 42 & -3 & 48 & -18 \\ \end{array}$

Теперь вторую строчку необходимо поделить на $2$, третью строчку на на $11$, а самую нижнюю строку делим на 3:

$ \begin{array}{cccc|c} 1& -8 & 1 & -9 & 6 \\ 0 & 2& -1 & 2 & -2 \\ 0 & -2 & 1 & -2 & 2 \\ 0& 14 & -1 & 16 & -6 \\ \end{array}$

Удаляем третью строчку, так как она пропорциональна со второй. А к последней строке прибавляем вторую, предварительно домноженную на $-7$:

$ \begin{array}{cccc|c} 1& -8 & 1 & -9 & 6 \\ 0 & 2& -1 & 2 & -2 \\ 0& 0 & 6 & 2 & 8 \\ \end{array}$

Теперь сокращаем последнюю строчку с $2$:

$ \begin{array}{cccc|c} 1& -8 & 1 & -9 & 6 \\ 0 & 2& -1 & 2 & -2 \\ 0& 0 & 3 & 1 & 4 \\ \end{array}$

В полученной матрице количество строк и столбцов неодинаково, а значит, она имеет бесконечное множество решений. Продолжаем дальнейшее преобразование системы, для этого необходимо в третьем столбце получить числа с равным модулем, поэтому сначала верхнюю строку умножаем на $-3$, а среднюю на $3$:

$ \begin{array}{cccc|c} -3& 24 & -3 & 27 & -18 \\ 0 & 6& -3 & 6 & -6 \\ 0& 0 & 3 & 1 & 4 \\ \end{array}$

Складываем поочередно первую строчку с третьей, а затем вторую с третьей:

$ \begin{array}{cccc|c} -3& 24 & 0 & 28 & -14 \\ 0 & 6 & 0 & 7 & -2 \\ 0& 0 & 3 & 1 & 4 \\ \end{array}$

Домножаем вторую строчку на $-4$ чтобы получить одинаковые по модулю числа во втором столбце нашей матрицы:

$ \begin{array}{cccc|c} -3& 24 & 0 & 28 & -14 \\ 0 & -24 & 0 & -28 & 8 \\ 0& 0 & 3 & 1 & 4 \\ \end{array}$

Складываем верхнюю строчку со второй:

$ \begin{array}{cccc|c} -3& 0 & 0 & 0 & -6 \\ 0 & -24 & 0 & -28 & 8 \\ 0& 0 & 3 & 1 & 4 \\ \end{array}$

Теперь необходимо разделить верхнюю строчку на $-3$, среднюю строчку на $-24$, а последнюю строчку нужно разделить на 3:

$ \begin{array}{cccc|c} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 7/6 & -1/3 \\ 0& 0 & 1 & 1/3 & 4/3 \\ \end{array}$

Если переписать в виде системы, получим следующее:

$\begin{cases} x_1 = 2 \\ x_2 + \frac{7}{6}x_4 = -\frac{1}{3} \\ x_3 + \frac{1}{3}x_4 = \frac{4}{3} \\ \end{cases}$

А теперь просто выражаем базисные переменные:

$\begin{cases} x_1 = 2 \\ x_2 = -\frac{7}{6}x_4 - \frac{1}{3} \\ x_3 = -\frac{1}{3}x_4 + \frac{4}{3} \\ \end{cases}$

Данная система является общим решением уравнения.

Дата последнего обновления статьи: 12.12.2023
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot