Понятие двойного интеграла
Двойной интеграл (ДИ) является обобщением определенного интеграла (ОИ) функции одной переменной на случай функции двух переменных.
Пусть непрерывная неотрицательная функция $z=f\left(x,y\right)$ задана в замкнутой области $D$, расположенной в координатной плоскости $xOy$. Функция $z=f\left(x,y\right)$ описывает некоторую поверхность, которая проецируется в область $D$. Область $D$ ограничена замкнутой линией $L$, граничные точки которой также принадлежат области $D$. Предполагаем, что линия $L$ образована конечным числом непрерывных кривых, заданных уравнениями вида $y=\vartheta \left(x\right)$ или $x=\psi \left(y\right)$.
Разобьем область $D$ на $n$ произвольных участков площадью $\Delta S_{i} $. В каждом из участков выберем по одной произвольной точке $P_{i} \left(\xi _{i} ,\eta _{i} \right)$. В каждой из этих точек вычислим значение заданной функции $f\left(\xi _{i} ,\eta _{i} \right)$. Рассмотрим объем под той частью поверхности $z=f\left(x,y\right)$, которая проецируется в участок $\Delta S_{i} $. Геометрически этот объем можно приближенно представить как объем цилиндра с основанием $\Delta S_{i} $ и высотой $f\left( \xi _{i} , \eta _{ii} \right)$, то есть равным произведению $f\left(\xi _{i} ,\eta _{i} \right)\cdot \Delta S_{i} $. Тогда объем под всей поверхностью $z=f\left(x,y\right)$ в пределах области $D$ можно приближенно вычислить как сумму объемов всех цилиндров $\sigma =\sum \limits _{i=1}^{n}f\left(\xi _{i} ,\eta _{i} \right)\cdot \Delta S_{i} $. Эта сумма называется интегральной суммой для функции $f\left(x,y\right)$ в области $D$.
Назовем диаметром $d_{i} \left(\Delta S_{i} \right)$ участка $\Delta S_{i} $ самое большое расстояние между крайними точками этого участка. Обозначим $\lambda $ самый большой из диаметров всех участков из области $D$. Пусть $\lambda \to 0$ за счет неограниченного $n\to \infty $ измельчения разбивки области $D$.
Если существует предел интегральной суммы $I=\mathop{\lim }\limits_{\lambda \to 0} \sigma $, то это число называют ДИ от функции $f\left(x,y\right)$ по области $D$ и обозначают $I=\iint \limits _{D}f\left(x,y\right)\cdot dS $ или $I=\iint \limits _{D}f\left(x,y\right)\cdot dx\cdot dy $.
При этом область $D$ называется областью интегрирования, $x$ и $y$ -- переменными интегрирования, а $dS=dx\cdot dy$ -- элементом площади.
Из определения следует геометрический смысл ДИ: он дает точное значение объема некоторого криволинейного цилиндра.
Применение двойных интегралов
Объем тела
В соответствии с геометрическим смыслом ДИ, объем $V$ некоторого тела, ограниченного сверху поверхностью $z=f\left(x,y\right)\ge 0$, снизу областью $D$ на плоскости $xOy$, по бокам цилиндрической поверхностью, образующие которой параллельны оси $Oz$, а направляющей является контур области $D$ (линия $L$), вычисляется по формуле $V=\iint \limits _{D}f\left(x,y\right)\cdot dx\cdot dy $.
Пусть тело ограничивает сверху поверхность $z=f_{2} \left(x,y\right)$, а снизу -- поверхность $z=f_{1} \left(x,y\right)$, причем $f_{2} \left(x,y\right)\ge f_{1} \left(x,y\right)$. Проекцией обеих поверхностей на плоскость $xOy$ является одна и та же область $D$. Тогда объем такого тела вычисляют по формуле $V=\iint \limits _{D}\left(f_{2} \left(x,y\right)-f_{1} \left(x,y\right)\right)\cdot dx\cdot dy $.
Предположим, что в области $D$ функция $f\left(x,y\right)$ меняет знак. Тогда для вычисления объема соответствующего тела область $D$ надо разбить на две части: часть $D_{1} $, где $f\left(x,y\right)\ge 0$, и часть $D_{2} $, где $f\left(x,y\right)\le 0$. При этом интеграл по области $D_{1} $ будет положительным и равным объему той части тела, которая лежит выше плоскости $xOy$. Интеграл по области $D_{2} $ будет отрицательным и по абсолютной величине равным объему той части тела, которая лежит ниже плоскости $xOy$.
Площадь плоской фигуры
Если везде в области $D$ на координатной плоскости $xOy$ положить $f\left(x,y\right)\equiv 1$, то ДИ численно равен площади области интегрирования $D$, то есть $S=\iint \limits _{D}dx\cdot dy $. В полярной системе координат эта же формула приобретает вид $S=\iint \limits _{D^{*} }\rho \cdot d\rho \cdot d\phi $.
Площадь произвольной поверхности
Пусть некоторая поверхность $Q$, заданная уравнением $z=f_{1} \left(x,y\right)$, проецируется на координатную плоскость $xOy$ в область $D_{1} $. В этом случае площадь поверхности $Q$ можно вычислить по формуле $S=\iint \limits _{D_{1} }\sqrt{1+\left(\frac{\partial z}{\partial x} \right)^{2} +\left(\frac{\partial z}{\partial y} \right)^{2} } \cdot dx\cdot dy $.
Количество вещества
Предположим, что в области $D$ на плоскости $xOy$ распределено некоторое вещество с поверхностной плотностью $\rho \left(x,y\right)$. Это значит, что поверхностная плотность $\rho \left(x,y\right)$ представляет собой массу вещества, приходящуюся на элементарную площадку $dx\cdot dy$ области $D$. При этих условиях общую массу вещества можно вычислить по формуле $M=\iint \limits _{D}\rho \left(x,y\right)\cdot dx\cdot dy $.
Заметим, что в качестве "вещества" может выступать электрический заряд, тепло и т.п.
Координаты центра массы плоской фигуры
Рассмотрим на плоскости $xOy$ материальную плоскую фигуру. Представим ее как некоторую область $D$, по которой распределено вещество общей массой $M$ с переменной поверхностной плотностью $\rho \left(x,y\right)$.
Формулы для вычисления значений координат центра массы плоской фигуры таковы:$ $$x_{c} =\frac{\iint \limits _{D}x\cdot \rho \left(x,y\right)\cdot dx\cdot dy }{M} $, $y_{c} =\frac{\iint \limits _{D}y\cdot \rho \left(x,y\right)\cdot dx\cdot dy }{M} $.
Величины в числителях называются статическими моментами $M_{y} $ и $M_{x} $ плоской фигуры $D$ относительно осей $Oy$ и $Ox$ соответственно.
Если плоская фигура однородна, то есть $\rho =const$, то эти формулы упрощаются и выражаются уже не через массу, а через площадь плоской фигуры $S$: $x_{c} =\frac{\iint \limits _{D}x\cdot dx\cdot dy }{S} $, $y_{c} =\frac{\iint \limits _{D}y\cdot dx\cdot dy }{S} $.
Моменты инерции площади плоской фигуры
Рассмотрим на плоскости $xOy$ материальную плоскую фигуру. Представим ее как некоторую область $D$, по которой распределено вещество общей массой $M$ с переменной поверхностной плотностью $\rho \left(x,y\right)$.
Значение момента инерции площади плоской фигуры относительно оси $Oy$: $I_{y} \; =\; \iint \limits _{D}x^{2} \cdot \; \rho (x,\; y)\; \cdot dx\; \cdot dy $. Значение момент инерции относительно оси $Ox$: $I_{x} \; =\; \iint \limits _{D}y^{2} \cdot \; \rho (x,\; y)\cdot \; dx\; \cdot dy $. Момент инерции плоской фигуры относительно начала координат равен сумме моментов инерции относительно осей координат, то есть $I_{O} =I_{x} +I_{y} $.
Тройные интегралы вводятся для функций трех переменных.
Предположим, что задана некоторая область $V$ трехмерного пространства, ограниченная замкнутой поверхностью $S$. Считаем, что точки, которые лежат на поверхности, также принадлежат области $V$. Предположим, что в области $V$ задана некоторая непрерывная функция $f\left(x,y,z\right)$. Например, такой функцией при условии $f\left(x,y,z\right)\ge 0$ может быть объемная плотность распределения некоторого вещества, распределение температуры и т.п.
Разобьем область $V$ на $n$ произвольных частей, объемы которых $\Delta V_{i} $. В каждой из частей выберем по одной произвольной точке $P_{i} \left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)$. В каждой из этих точек вычислим значение заданной функции $f\left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)$.
Образуем интегральную сумму $\sum \limits _{i=1}^{n}f\left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)\cdot \Delta V_{i} $ и будем неограниченно измельчать $\left(n\to \infty \right)$ разбивку области $V$ так, чтобы самый большой из диаметров $\lambda $ всех частей $\Delta V_{i} $ неограниченно уменьшался $\left(\lambda \to 0\right)$.
При перечисленных условиях предел $I$ этой интегральной суммы существует, называется тройным интегралом от функции $f\left(x,y,z\right)$ по области $V$ и обозначается $I\; =\; \iiint \limits _{V}f\left(x,y,z\right)\; \cdot dV $ или $I\; =\; \iiint \limits _{V}f\left(x,y,z\right)\cdot \; dx\cdot \; dy\; \cdot dz $.
Здесь область $V$ является областью интегрирования, $x$, $y$ и $z$ -- переменными интегрирования, а $dV=dx\cdot dy\cdot dz$ -- элементом объема.