Справочник от Автор24
Нужна помощь?
Найдем эксперта за 5 минут
Подобрать эксперта
+2

Кратные интегралы

Срочно нужна работа?
Мы готовы помочь!
Найти эксперта

Понятие двойного интеграла

Двойной интеграл (ДИ) является обобщением определенного интеграла (ОИ) функции одной переменной на случай функции двух переменных.

Пусть непрерывная неотрицательная функция $z=f\left(x,y\right)$ задана в замкнутой области $D$, расположенной в координатной плоскости $xOy$. Функция $z=f\left(x,y\right)$ описывает некоторую поверхность, которая проецируется в область $D$. Область $D$ ограничена замкнутой линией $L$, граничные точки которой также принадлежат области $D$. Предполагаем, что линия $L$ образована конечным числом непрерывных кривых, заданных уравнениями вида $y=\vartheta \left(x\right)$ или $x=\psi \left(y\right)$.

Разобьем область $D$ на $n$ произвольных участков площадью $\Delta S_{i} $. В каждом из участков выберем по одной произвольной точке $P_{i} \left(\xi _{i} ,\eta _{i} \right)$. В каждой из этих точек вычислим значение заданной функции $f\left(\xi _{i} ,\eta _{i} \right)$. Рассмотрим объем под той частью поверхности $z=f\left(x,y\right)$, которая проецируется в участок $\Delta S_{i} $. Геометрически этот объем можно приближенно представить как объем цилиндра с основанием $\Delta S_{i} $ и высотой $f\left( \xi _{i} , \eta _{ii} \right)$, то есть равным произведению $f\left(\xi _{i} ,\eta _{i} \right)\cdot \Delta S_{i} $. Тогда объем под всей поверхностью $z=f\left(x,y\right)$ в пределах области $D$ можно приближенно вычислить как сумму объемов всех цилиндров $\sigma =\sum \limits _{i=1}^{n}f\left(\xi _{i} ,\eta _{i} \right)\cdot \Delta S_{i} $. Эта сумма называется интегральной суммой для функции $f\left(x,y\right)$ в области $D$.

Назовем диаметром $d_{i} \left(\Delta S_{i} \right)$ участка $\Delta S_{i} $ самое большое расстояние между крайними точками этого участка. Обозначим $\lambda $ самый большой из диаметров всех участков из области $D$. Пусть $\lambda \to 0$ за счет неограниченного $n\to \infty $ измельчения разбивки области $D$.

Определение

Если существует предел интегральной суммы $I=\mathop{\lim }\limits_{\lambda \to 0} \sigma $, то это число называют ДИ от функции $f\left(x,y\right)$ по области $D$ и обозначают $I=\iint \limits _{D}f\left(x,y\right)\cdot dS $ или $I=\iint \limits _{D}f\left(x,y\right)\cdot dx\cdot dy $.

При этом область $D$ называется областью интегрирования, $x$ и $y$ -- переменными интегрирования, а $dS=dx\cdot dy$ -- элементом площади.

Из определения следует геометрический смысл ДИ: он дает точное значение объема некоторого криволинейного цилиндра.

Применение двойных интегралов

Объем тела

В соответствии с геометрическим смыслом ДИ, объем $V$ некоторого тела, ограниченного сверху поверхностью $z=f\left(x,y\right)\ge 0$, снизу областью $D$ на плоскости $xOy$, по бокам цилиндрической поверхностью, образующие которой параллельны оси $Oz$, а направляющей является контур области $D$ (линия $L$), вычисляется по формуле $V=\iint \limits _{D}f\left(x,y\right)\cdot dx\cdot dy $.

Пусть тело ограничивает сверху поверхность $z=f_{2} \left(x,y\right)$, а снизу -- поверхность $z=f_{1} \left(x,y\right)$, причем $f_{2} \left(x,y\right)\ge f_{1} \left(x,y\right)$. Проекцией обеих поверхностей на плоскость $xOy$ является одна и та же область $D$. Тогда объем такого тела вычисляют по формуле $V=\iint \limits _{D}\left(f_{2} \left(x,y\right)-f_{1} \left(x,y\right)\right)\cdot dx\cdot dy $.

Предположим, что в области $D$ функция $f\left(x,y\right)$ меняет знак. Тогда для вычисления объема соответствующего тела область $D$ надо разбить на две части: часть $D_{1} $, где $f\left(x,y\right)\ge 0$, и часть $D_{2} $, где $f\left(x,y\right)\le 0$. При этом интеграл по области $D_{1} $ будет положительным и равным объему той части тела, которая лежит выше плоскости $xOy$. Интеграл по области $D_{2} $ будет отрицательным и по абсолютной величине равным объему той части тела, которая лежит ниже плоскости $xOy$.

Площадь плоской фигуры

Если везде в области $D$ на координатной плоскости $xOy$ положить $f\left(x,y\right)\equiv 1$, то ДИ численно равен площади области интегрирования $D$, то есть $S=\iint \limits _{D}dx\cdot dy $. В полярной системе координат эта же формула приобретает вид $S=\iint \limits _{D^{*} }\rho \cdot d\rho \cdot d\phi $.

Площадь произвольной поверхности

Пусть некоторая поверхность $Q$, заданная уравнением $z=f_{1} \left(x,y\right)$, проецируется на координатную плоскость $xOy$ в область $D_{1} $. В этом случае площадь поверхности $Q$ можно вычислить по формуле $S=\iint \limits _{D_{1} }\sqrt{1+\left(\frac{\partial z}{\partial x} \right)^{2} +\left(\frac{\partial z}{\partial y} \right)^{2} } \cdot dx\cdot dy $.

Количество вещества

Предположим, что в области $D$ на плоскости $xOy$ распределено некоторое вещество с поверхностной плотностью $\rho \left(x,y\right)$. Это значит, что поверхностная плотность $\rho \left(x,y\right)$ представляет собой массу вещества, приходящуюся на элементарную площадку $dx\cdot dy$ области $D$. При этих условиях общую массу вещества можно вычислить по формуле $M=\iint \limits _{D}\rho \left(x,y\right)\cdot dx\cdot dy $.

Заметим, что в качестве "вещества" может выступать электрический заряд, тепло и т.п.

Координаты центра массы плоской фигуры

Рассмотрим на плоскости $xOy$ материальную плоскую фигуру. Представим ее как некоторую область $D$, по которой распределено вещество общей массой $M$ с переменной поверхностной плотностью $\rho \left(x,y\right)$.

Формулы для вычисления значений координат центра массы плоской фигуры таковы:$ $$x_{c} =\frac{\iint \limits _{D}x\cdot \rho \left(x,y\right)\cdot dx\cdot dy }{M} $, $y_{c} =\frac{\iint \limits _{D}y\cdot \rho \left(x,y\right)\cdot dx\cdot dy }{M} $.

Величины в числителях называются статическими моментами $M_{y} $ и $M_{x} $ плоской фигуры $D$ относительно осей $Oy$ и $Ox$ соответственно.

Если плоская фигура однородна, то есть $\rho =const$, то эти формулы упрощаются и выражаются уже не через массу, а через площадь плоской фигуры $S$: $x_{c} =\frac{\iint \limits _{D}x\cdot dx\cdot dy }{S} $, $y_{c} =\frac{\iint \limits _{D}y\cdot dx\cdot dy }{S} $.

Моменты инерции площади плоской фигуры

Рассмотрим на плоскости $xOy$ материальную плоскую фигуру. Представим ее как некоторую область $D$, по которой распределено вещество общей массой $M$ с переменной поверхностной плотностью $\rho \left(x,y\right)$.

Значение момента инерции площади плоской фигуры относительно оси $Oy$: $I_{y} \; =\; \iint \limits _{D}x^{2} \cdot \; \rho (x,\; y)\; \cdot dx\; \cdot dy $. Значение момент инерции относительно оси $Ox$: $I_{x} \; =\; \iint \limits _{D}y^{2} \cdot \; \rho (x,\; y)\cdot \; dx\; \cdot dy $. Момент инерции плоской фигуры относительно начала координат равен сумме моментов инерции относительно осей координат, то есть $I_{O} =I_{x} +I_{y} $.

Тройной интеграл

Тройные интегралы вводятся для функций трех переменных.

Предположим, что задана некоторая область $V$ трехмерного пространства, ограниченная замкнутой поверхностью $S$. Считаем, что точки, которые лежат на поверхности, также принадлежат области $V$. Предположим, что в области $V$ задана некоторая непрерывная функция $f\left(x,y,z\right)$. Например, такой функцией при условии $f\left(x,y,z\right)\ge 0$ может быть объемная плотность распределения некоторого вещества, распределение температуры и т.п.

Разобьем область $V$ на $n$ произвольных частей, объемы которых $\Delta V_{i} $. В каждой из частей выберем по одной произвольной точке $P_{i} \left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)$. В каждой из этих точек вычислим значение заданной функции $f\left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)$.

Образуем интегральную сумму $\sum \limits _{i=1}^{n}f\left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)\cdot \Delta V_{i} $ и будем неограниченно измельчать $\left(n\to \infty \right)$ разбивку области $V$ так, чтобы самый большой из диаметров $\lambda $ всех частей $\Delta V_{i} $ неограниченно уменьшался $\left(\lambda \to 0\right)$.

Определение

При перечисленных условиях предел $I$ этой интегральной суммы существует, называется тройным интегралом от функции $f\left(x,y,z\right)$ по области $V$ и обозначается $I\; =\; \iiint \limits _{V}f\left(x,y,z\right)\; \cdot dV $ или $I\; =\; \iiint \limits _{V}f\left(x,y,z\right)\cdot \; dx\cdot \; dy\; \cdot dz $.

Здесь область $V$ является областью интегрирования, $x$, $y$ и $z$ -- переменными интегрирования, а $dV=dx\cdot dy\cdot dz$ -- элементом объема.

Срочно нужна работа?
Мы готовы помочь!
Найти эксперта
Дата последнего обновления статьи: 19.01.2026