Справочник от Автор24
Найди автора для помощи в учебе
Найти автора
+2

Определение функции распределения

Определение функции распределения

Пусть $X$ – случайная величина, а $x$ – вероятность распределения этой случайной величины.

Определение 1

Функцией распределения называется функция $F(x)$ удовлетворяющая условию $F\left(x\right)=P(X

Также иначе функцию распределения иногда называются интегральной функцией распределения или интегральным законом распределения.

В общем виде график функции распределения представляет собой график неубывающей функции с областью значений, принадлежащей отрезку $\left[0,1\right]$ (причем 0 и 1 обязательно входят в область значений). При этом функция может, как иметь, так и не иметь скачков функции (рис. 1)

Пример графика функции распределения

Рисунок 1. Пример графика функции распределения

Функция распределения дискретной случайной величины

Пусть случайная величина $X$ является дискретной. И пусть для нее дан ряд её распределения. Для такой величины функцию распределения вероятностей можно записать в следующем виде:

ступенчатую функцию

Функция распределения непрерывной случайной величины

Пусть случайная величина $X$ теперь является непрерывной.

График функции распределения такой случайной величины всегда представляет собой неубывающую непрерывную функцию (рис. 3).

«Определение функции распределения» 👇
Помощь автора по теме работы
Найти автора
Скидки на первый заказ
Все промокоды
Собрали более 72 000 авторов учебных работ
Найти автора

Функция распределения смешанной случайной величины

Рассмотрим теперь случай, где случайная величина $X$ является смешанной.

График функции распределения такой случайной величины всегда представляет собой неубывающую функцию, которая имеет минимальное значение в 0, максимальное значение в 1, но которая не на всей области определения является непрерывной функцией (то есть имеет скачки в отдельных точках) (рис. 4).

Функция распределения смешанной случайной величины

Рисунок 4. Функция распределения смешанной случайной величины

Примеры задач на нахождение функции распределения

Пример 1

Приведен ряд распределений появления события $A$ в трех опытах



Рисунок 5.

Найти функцию распределения вероятностей и построить её график.

Решение.

Так как случайная величина является дискретной, то мы можем пользоваться формулой $\ F\left(x\right)=\sum\limits_{x_i

При $x\le 0$, $F\left(x\right)=0$;

При $0

При $1

При $2

При $x>3$, $F\left(x\right)=0,2+0,1+0,3+0,4=1$;

Отсюда получаем следующую функцию распределения вероятностей:



Рисунок 6.

Построим ее график:



Рисунок 7.

Пример 2

Проводится один опыт, в котором событие $A$ может, как произойти, так и не произойти. Вероятность того, что данное событие произойдет равно $0,6$. Найти и построить функцию распределения случайной величины.

Решение.

Так как вероятность того, что событие $A$ произойдет равно $0,6$, то вероятность того, что данное событие не произойдет равно $1-0,6=0,4$.

Построим для начала ряд распределения данной случайной величины:



Рисунок 8.

Так как случайная величина является дискретной, найдем функцию распределения по аналогии с задачей 1:

При $x\le 0$, $F\left(x\right)=0$;

При $0

При $x>1$, $F\left(x\right)=0,4+0,6=1$;

Таким образом, получаем следующую функцию распределения:



Рисунок 9.

Построим ее график:



Рисунок 10.

Дата последнего обновления статьи: 20.02.2025
Не знаешь, как приступить к заданию?
За 5 минут найдем эксперта и проконсультируем по заданию. Переходи в бота и получи скидку 500 ₽ на первый заказ.
Запустить бота
Нужна помощь с заданием?

Эксперт возьмёт заказ за 5 мин, 400 000 проверенных авторов помогут сдать работу в срок. Гарантия 20 дней, поможем начать и проконсультируем в Telegram-боте Автор24.

Перейти в Telegram Bot