Начальные геометрические сведения
Понятие отрезка, как и понятие точки, прямой, луча и угла, относится к начальным геометрическим сведениям. С перечисленных понятий начинается изучение геометрии.
Под "начальными сведениями" обычно понимают нечто элементарное и простое. В понимании, возможно, это так и есть. Тем не менее, такие простые понятия часто встречаются и оказываются необходимыми не только в нашей повседневной жизни, но и в производстве, строительстве и прочих сферах нашей жизнедеятельности.
Начнём с определений.
Отрезок - часть прямой, ограниченная двумя точками (концами).
Если концы отрезка являются точками $A$ и $B$, то образованный отрезок записывают как $AB$ или $BA$. Такому отрезку принадлежат точки $A$ и $B$, а также все точки прямой, лежащие между этими точками.
Рисунок 1. Отрезок. Автор24 — интернет-биржа студенческих работ
Середина отрезка - точка отрезка, которая делит его пополам на два равных отрезка.
Если это точка $C$, то $AC=CB$.
Рисунок 2. Середина отрезка. Автор24 — интернет-биржа студенческих работ
Измерение отрезка происходит сравнением с определённым отрезком, принятым за единицу измерения. Чаще всего используют сантиметр. Если в заданном отрезке сантиметр укладывается ровно четыре раза, то это означает, что длина данного отрезка равна $4$ см.
Введём простое наблюдение. Если точка делит отрезок на два отрезка, то длина всего отрезка равна сумме длин этих отрезков.
Формула нахождения координаты середины отрезка
Формула нахождения координаты середины отрезка относится к курсу аналитической геометрии на плоскости.
Дадим определение координатам.
Координаты - это определённые (или упорядоченные) числа, которые показывают положение точки на плоскости, на поверхности или в пространстве.
В нашем случае, координаты отмечаются на плоскости, определённой координатными осями.
Координатная плоскость. Автор24 — интернет-биржа студенческих работ" />
Рисунок 3. Координатная плоскость. Автор24 — интернет-биржа студенческих работ
Опишем рисунок. На плоскости выбрана точка, называемая началом координат. Её обозначают буквой $O$. Через начало координат проведены две прямые (координатные оси), пересекающиеся под прямым углом, причём одна из них строго горизонтальная, а другая - вертикальная. Такое положение считается обычным. Горизонтальная прямая называется осью абсцисс и обозначается $OX$, вертикальная - осью ординат $OY$.
Таким образом, оси определяют плоскость $XOY$.
Координаты точек в такой системе определяются двумя числами.
Существуют разные формулы (уравнения), определяющие те или иные координаты. Обычно в курсе аналитической геометрии изучают разные формулы прямых, углов, длины отрезка и прочие.
Перейдём сразу к формуле координаты середины отрезка.
Если координаты точки $E(x,y)$ - это середина отрезка $M_1M_2$, то:
Рисунок 4. Формула нахождения координаты середины отрезка. Автор24 — интернет-биржа студенческих работ
Практическая часть
Примеры из школьного курса геометрии достаточно просты. Рассмотрим несколько основных.
Для лучшего понимания, рассмотрим для начала элементарный наглядный пример.
Имеем рисунок:
Рисунок 5. Отрезки на плоскости. Автор24 — интернет-биржа студенческих работ
На рисунке отрезки $AC, CD, DE, EB$ равны.
- Серединой каких отрезков является точка $D$?
- Какая точка является серединой отрезка $DB$?
Ответы:
- точка $D$ является серединой отрезков $AB$ и $CE$;
- точка $E$.
Рассмотрим другой простой пример, в котором нужно вычислить длину.
Точка $B$ - середина отрезка $AC$. $AB = 9$ см. Какая длина $AC$?
Так как т. $B$ делит $AC$ пополам, то $AB = BC= 9$ см. Значит, $AC = 9+9=18$ см.
Ответ: 18 см.
Прочие подобные примеры обычно идентичны и ориентированы на умение сопоставлять значения длин и их представление с алгебраическими действиями. Нередко в задачах встречаются случаи, когда сантиметр не укладывается ровное количество раз в отрезок. Тогда единицу измерения делят на равные части. В нашем случае сантиметр делится на 10 миллиметров. Отдельно измеряют остаток, сравнивая с миллиметром. Приведём пример, демонстрирующий такой случай.
Точка $B$ - середина отрезка $AC$. $AC = 8,4$ см. Какая длина $AB$?
Так как т. $B$ делит $AC$ пополам, то $AB = \frac{8,4}{2}$ см. Значит, $AB = 4,2$ см.
Ответ: 4,2 см.
Если в очередной задаче возникают трудности с пониманием её решения (например, нетипичные случаи с несколькими отрезками, образующими углами и прочими усложнениями), то лучше рассмотреть задачу, сделав по её условию рисунок. Наглядность способствует лучшему пониманию и более скорому нахождению решения.
Теперь решим задачи по аналитической геометрии.
Даны точки $T_1(7,11)$ и $T_2(1,23)$. Требуется найти координаты середины отрезка $T_1T_2$.
Абсцисса середины отрезка: $x=\frac{7+1}{2}=4$. Ордината: $y=\frac{11+23}{2}=17$.
Ответ: $(4,17)$.
Даны точки $T(6,-1)$ и $S(-4,-8)$. Точка $S$ - середина $TK$. Найти координаты $K$.
Подставим значения и получим уравнения:
$-4=\frac{6+x_2}{2}, -8=\frac{-1+y_2}{2}.$
Найдём координаты:
$-2=6+x_2, -4=-1+y_2; x_2=-8, y_2=-3$.
Ответ: $K(-8,-3)$.