Для фенолов, как и для других енолов, характерная кето-енольная таутомерия. Однако большинство одноатомных фенолов существует исключительно в енольной форме. Такая устойчивость енольной формы по сравнению с кетонами обусловлена ароматичностью бензольного ядра, а также высокой степенью сопряжения пары электронов атома гидроксильного кислорода с $\pi$-электронной системой бензольного кольца ($\rho-\pi$-сопряжение):
Рисунок 1.
В результате указанного сопряжения электронная плотность кислорода смещается к бензольному ядру и усиливает его электронодонорные свойства, несмотря на $-I$-эффект $OH$-группы. При этом $O-H$-связь становится более полярной, что способствует ее ионизации с образованием протона и фенолят-аниона. Итак, фенолы - это типичные $OH$-кислоты:
Рисунок 2.
В фенолят-анионе отрицательный заряд атома кислорода значительно делокализован, что повышает его устойчивость, но уменьшает основность по сравнению с алкоксид-анионом $RO^-$. Рассредоточение отрицательного заряда можно передать с помощью резонансных структур I-IV, которые невозможны для алифатических спиртов:
Рисунок 3.
Фенолы как кислоты
Как кислоты фенолы сильнее, чем вода и спирты, но слабее, чем угольная, цианидная и карбоновые кислоты:
Рисунок 4.
Поэтому фенолы взаимодействуют не только с натрием, но и, в отличие от алканолов, с сильными основаниями - щелочами. Со слабыми основаниями вроде гидрокарбонатов щелочных металлов фенолы не взаимодействуют:
Рисунок 5.
Это используют для разделения смесей спиртов, фенолов и карбоновых кислот по схеме:
Рисунок 6.
Приведенный способ разделения не может быть применен, если все три исходных соединения растворяются в воде.
Феноляты щелочных металлов аналогично солям сильных оснований и слабых кислот легко гидролизуются водой, и раствор проявляет сильнощелочную реакцию:
Рисунок 7.
Зависимость кислотности фенолов зависит от заместителя в ядре
Кислотность фенолов зависит от природы заместителя в ядре. Электроноакцепторные заместители увеличивают кислотность, а электронодонорные - уменьшают. Влияние природы заместителя на фенолы противоположна его действия на основность ароматических аминов. Так, введение сильной акцепторной нитрогруппы изменяет значение показателя кислотности $pK_a$ фенолов следующим образом:
Рисунок 8.
Повышение кислотности объясняется способностью $NO_2$-группы участвовать в делокализации отрицательного заряда феноксидного аниона. При наличии в молекуле фенола трех нитрогрупп кислотные свойства, например, пикриновой кислоты достигают уровня минеральных.
В таблице 1 приведены значение показателя кислотности $pK_a$ некоторых замещенных фенолов в воде при 25$^\circ$С с расположением заместителя в орто-, мета- и пара- положении.
Значение $pK_a$ орто-, мета- и пара-замещенных фенолов в воде при 25$^\circ$С:
Рисунок 9.
В таблице 2 приведены значение показателя кислотности $pK_a$ некоторых замещенных фенолов в воде при 25$^\circ$С.
Значение $pK_a$ замещенных фенолов в воде при 25$^\circ$С:
Рисунок 10.
Феноляты тяжелых металлов
Фенолы способны образовывать феноляты не только со щелочными металлами, но и с солями тяжелых металлов. Так, с солями железа (III) они дают окрашенные в фиолетовый цвет комплексные соединения, поэтому соли $Fe$(III) выступают как реактивы на енольный (фенильный) гидроксил:
Рисунок 11.