Изоклина
кривая, в каждой точке которой наклон поля направлений один и тот же
обыкновенное дифференциальное уравнение второго порядка d(p(x)dy/dx)/dx + (λq(x) + r(x))y = 0, где p, q и r — заданные непрерывные функции (причем p(x) > 0), а λ — произвольный параметр
На отрезке [0, 1] рассматривается задача Штурма Лиувилля для обыкновенного дифференциального уравнения второго порядка с разрывной нелинейностью в правой части, умноженной на положительный параметр. При неотрицательных значениях фазовой переменной u нелинейность равна нулю, а при отрицательных совпадает с непрерывной на [0, 1] × (-∞, 0] функцией. Граничные условия имеют вид u(0) = a, u(1) = b, где a, b положительные числа. Исходная задача преобразуется к эквивалентной однородной, которая при любом положительном значении параметра имеет нулевое решение. Её спектр образуют те значения параметра, при которых краевая задача имеет ненулевое решение. При условии подлинейного роста нелинейности на бесконечности для каждого положительного значения параметра строится итерационный процесс, монотонно сходящийся к минимальному решению. Доказывается, что спектр задачи имеет вид [C, +∞), где C > 0, если он непустой.
Работа включает исследования оператора Штурма-Лиувилля методами функционального анализа и доказательство теоремы о существовании решений нелинейного дифференциального уравнения соответствующего оператору.
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве