Справочник от Автор24
Нужна помощь?
Найдем эксперта за 5 минут
Подобрать эксперта
+2

Штурма – Лиувилля уравнение

Предмет Высшая математика
👍 Проверено Автор24

обыкновенное дифференциальное уравнение второго порядка d(p(x)dy/dx)/dx + (λq(x) + r(x))y = 0, где p, q и r — заданные непрерывные функции (причем p(x) > 0), а λ — произвольный параметр

Скачать

Научные статьи на тему «Штурма – Лиувилля уравнение»

Задача Штурма-Лиувилля для уравнения с разрывной нелинейностью

На отрезке [0, 1] рассматривается задача Штурма Лиувилля для обыкновенного дифференциального уравнения второго порядка с разрывной нелинейностью в правой части, умноженной на положительный параметр. При неотрицательных значениях фазовой переменной u нелинейность равна нулю, а при отрицательных совпадает с непрерывной на [0, 1] × (-∞, 0] функцией. Граничные условия имеют вид u(0) = a, u(1) = b, где a, b положительные числа. Исходная задача преобразуется к эквивалентной однородной, которая при любом положительном значении параметра имеет нулевое решение. Её спектр образуют те значения параметра, при которых краевая задача имеет ненулевое решение. При условии подлинейного роста нелинейности на бесконечности для каждого положительного значения параметра строится итерационный процесс, монотонно сходящийся к минимальному решению. Доказывается, что спектр задачи имеет вид [C, +∞), где C > 0, если он непустой.

Научный журнал

Гладкость решений (разделимость) нелинейного уравнения штурма-лиувилля

Работа включает исследования оператора Штурма-Лиувилля методами функционального анализа и доказательство теоремы о существовании решений нелинейного дифференциального уравнения соответствующего оператору.

Научный журнал

Еще термины по предмету «Высшая математика»

Индуктивное определение

способ определения множества, при котором задаются некоторые элементы определяемого множества и некоторые правила, позволяющие из имеющихся получать другие элементы этого множества; в частном случае определение понятия P (n), зависящего от натурального параметра n, протекает по следующей схеме: задаются P (0) и правило получения P (n + 1) от n и P (n); напр., факториал n! определяется так: 0! = 1, (n + 1)! = (n + 1) · n!

🌟 Рекомендуем тебе
Смотреть больше терминов

Повышай знания с онлайн-тренажером от Автор24!

  1. Напиши термин
  2. Выбери определение из предложенных или загрузи свое
  3. Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных карточек
Нужна помощь с заданием?

Эксперт возьмёт заказ за 5 мин, 400 000 проверенных авторов помогут сдать работу в срок. Гарантия 20 дней, поможем начать и проконсультируем в Telegram-боте Автор24.

Перейти в Telegram Bot