Круг кривизны
соприкасающийся круг
последовательность, не являющаяся сходящейся
не имеет границы, так как ряд расходящийся....
Этот ряд расходящийся....
С этого можно сделать вывод что ряд расходящийся....
Делаем вывод, что ряд расходящийся....
Ряд расходящийся.
Систематизированы известные понятия и теоремы, касающиеся пределов. Для описания расходящихся последовательностей и функций введен ряд новых понятий и определений, в частности, понятия спектра предельных точек, сходимости к спектру предельных точек, функции и плотности распределения предельных точек, границ функции распределения и др. Основу предложенного подхода составляют методы теории гиперслучайных явлений
Будем считать, что читателю уже известно понятие последовательности....
Итак, имеем последовательность $\{a_n\}$. Рассмотрим сумму её членов:
$a_1+a_2+......
Определение 1
Числовой ряд - это бесконечная сумма из бесконечной последовательности чисел:
$\sum...
Приведём понятие сходящегося числового ряда и расходящегося....
Иначе ряд расходящийся.
Разработан метод построения целого класса последовательностей, не содержащих псевдосходящихся подпоследовательностей (подпоследовательностей, суммируемых средними арифметическими). Построен пример банахова пространства последовательностей с такой согласованной топологией, в которой сходятся псевдосходящиеся, расходящиеся по норме последовательности, но расходятся последовательности, не содержащие псевдосходящихся подпоследовательностей.
соприкасающийся круг
число, обладающее свойствами: a ± 0 = a, a ⋅ 0 = 0; деление на нуль невозможно
кривая, имеющая конечную длину
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне