Рангматрицы
Определение 1
Система строк/столбцов некоторой матрицы называется линейно независимой... Этот ранг называется рангом рассматриваемой матрицы.... Рангматрицы - это максимальный из порядков миноров заданной матрицы, для которых определитель отличен... Рангматрицы обладает следующими свойствами:
Для нулевой матрицырангматрицы равен нулю, для остальных... Как определить рангматрицы: примеры
Пример 1
Определить рангматрицы $A=\left(\begin{array}{ccc
Рассмотрена задача о нахождении ранга прямоугольной матрицы, элементы которой являются гладкими функциями. Такие матрицы исследуются при анализе свойств регулярности и инволютивности распределений. Для нахождения ранга функциональных матриц целесообразно использовать системы компьютерной алгебры, позволяющие проводить аналитические вычисления. Альтернативой полному перебору миноров является алгоритм Гаусса преобразования матрицы к трапецеидальному виду. При анализе размерности и инволютивности распределений часто представляет интерес ранг функциональной матрицы в окрестности некоторой точки. Обычный метод Гаусса не дает ответа на этот вопрос: может оказаться, что базисный минор обнуляется именно в заданной точке. В статье описан модифицированный алгоритм, основанный на методе Гаусса, который позволяет получить ответ на вопрос о существовании некоторой области, содержащей заданную точку, в которой функциональная матрица имеет постоянный ранг. Рассмотрены примеры
РангматрицыРангматрицы рассматривается как максимальное число линейно-зависимых строк матрицы и наибольшее... Свойства:
Рангматрицы не изменяется при транспонировании.... При вычеркивании нулевого ряда ранг не изменяется.... Рангматрицы не изменяется при выполнении элементарных преобразований.... Ранг треугольной матрицы равен числу ненулевых элементов, расположенных на главной диагонали.
Большинство современных математических методов решения задач естествознания, техники, экономики требуют решения линейных задач большой размерности. Для понижения вычислительной сложности используется специальная структура матриц, соответствующих этим задачам. Блочно-малоранговые матрицы представляют из себя приближение с хорошей точностью плотных матриц в малопараметрическом формате. Блоки малого ранга представляются в виде произведения матриц меньшего размера. Это позволяет значительно экономить машинную память. Методы приближенной факторизации блочно-малоранговых матриц могут быть применены для приближенного решения и предобуславливания систем с плотными матрицами в задачах аэро-, гидрои электродинамики, а также в прикладной статистике и логистике. Для построения малопараметрических представлений матриц, основанных на малоранговых аппроксимациях отдельных блоков, широко используются алгебраические методы. В данной работе рассмотрен эффективный способ аппроксимации блоков матрицы с...
преобразование плоскости (пространства), переводящее каждую точку P в такую точку P′, лежащую на луче OP , что OP̅ · OP̅′ = c, где O — фиксированная точка (центр, или полюс инверсии) и c ≠ 0 — постоянная (коэффициент, или степень инверсии)