Ранг матрицы
Система строк/столбцов некоторой матрицы называется линейно независимой, если ни одна из этих строк (ни один из этих столбцов) линейно не выражается через другие строки/столбцы.
Рангом системы строк/столбцов некоторой матрицы $A=\left(a_{ij} \right)_{m\times n} $ называется наибольшее количество линейно независимых строк/столбцов.
Ранг системы столбцов всегда совпадает с рангом системы строк. Этот ранг называется рангом рассматриваемой матрицы.
Ранг матрицы - это максимальный из порядков миноров заданной матрицы, для которых определитель отличен от нуля.
Для обозначения ранга матрицы используют следующие записи: $rangA$, $rgA$, $rankA$.
Ранг матрицы обладает следующими свойствами:
- Для нулевой матрицы ранг матрицы равен нулю, для остальных - ранг есть некоторое положительное число.
- Ранг прямоугольной матрицы порядка $m\times n$ не больше меньшего из количества строк или столбцов матрицы, т.е. $0\le rang\le \min (m,n)$.
- Для невырожденной квадратной матрицы некоторого порядка ранг этой матрицы совпадает с порядком данной матрицы.
- Определитель квадратной матрицы некоторого порядка, имеющей ранг меньший порядка матрицы, равный нулю.
Существует два способа нахождения ранга матрицы:
- окаймлять с помощью определителей и миноров (метод окантовки);
- посредством элементарных преобразований.
Алгоритм метода окантовки включает следующее:
- В случае, когда все миноры первого порядка являются равными нулю, имеем ранг рассматриваемой матрицы равным нулю.
- В случае, когда хотя бы один из миноров первого порядка не является равным нулю, и при этом все миноры второго порядка являются равными нулю, ранг матрицы равен 1.
- В случае, когда хотя бы один из миноров второго порядка не является равным нулю, выполняется исследование миноров третьего порядка. В результате находится минор порядка $k$ и проверяется, не являются ли равными нулю миноры порядка $k+1$. Если все миноры порядка $k+1$ является равными нулю, то ранг матрицы равен $k$.
Как определить ранг матрицы: примеры
Определить ранг матрицы $A=\left(\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right)$.
Решение:
Отметим, что ранг исходной матрицы не может быть более 3.
Среди миноров первого порядка имеются миноры не равные нулю, например, $M_{1} =\left|-2\right|=-2$. Рассмотрим миноры второго порядка.
$M_{2} =\left|\begin{array}{cc} {-2} & {1} \\ {1} & {0} \end{array}\right|=-2\cdot 0-1\cdot 1=0-1=-1\ne 0$
Выполним окаймление минора второго порядка и получим минор третьего порядка.
$M_{3} =\left|\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right|=-2\cdot 0\cdot 3+1\cdot 3\cdot 1+1\cdot 2\cdot 4-1\cdot 0\cdot 4-1\cdot 1\cdot 3-2\cdot 3\cdot (-2)=3+8-0-3+12=20\ne 0$
Следовательно, ранг рассматриваемой матрицы равен 3.
Определить ранг матрицы $A=\left(\begin{array}{ccccc} {1} & {2} & {3} & {0} & {1} \\ {0} & {1} & {2} & {3} & {4} \\ {2} & {3} & {1} & {4} & {5} \\ {0} & {0} & {0} & {0} & {0} \end{array}\right)$.
Решение:
Отметим, что ранг исходной матрицы не может быть более 4 (строк 4, столбцов 5).
Среди миноров первого порядка имеются отличные от нуля, например, $M_{1} =\left|1\right|=1$. Рассмотрим миноры второго порядка.
$M_{2} =\left|\begin{array}{cc} {1} & {2} \\ {0} & {1} \end{array}\right|=1\cdot 1-0\cdot 2=1-0=1\ne 0$
Выполним окаймление минора второго порядка и получим минор третьего порядка.
$M_{3} =\left|\begin{array}{ccc} {1} & {2} & {3} \\ {0} & {1} & {2} \\ {2} & {3} & {1} \end{array}\right|=1\cdot 1\cdot 1+2\cdot 2\cdot 2+0\cdot 3\cdot 3-2\cdot 1\cdot 3-0\cdot 1\cdot 2-2\cdot 3\cdot 1=1+8+0-6-0-6=-3\ne 0$
Выполним окантовывание минора третьего порядка и получим минор четвертого порядка.
$M_{4} =\left|\begin{array}{cccc} {1} & {2} & {3} & {0} \\ {0} & {1} & {2} & {3} \\ {2} & {3} & {1} & {4} \\ {0} & {0} & {0} & {0} \end{array}\right|=0$ (содержит нулевую строку)
$M_{5} =\left|\begin{array}{cccc} {1} & {2} & {3} & {1} \\ {0} & {1} & {2} & {4} \\ {2} & {3} & {1} & {5} \\ {0} & {0} & {0} & {0} \end{array}\right|=0$ (содержит нулевую строку)
Все миноры четвертого порядка матрицы равны нулю, следовательно, ранг рассматриваемой матрицы равен 3.
Нахождение ранга матрицы посредством элементарных преобразований сводится к приведению матрицы к диагональному (ступенчатому) виду. Ранг полученной в результате преобразований матрицы равен числу ненулевых диагональных элементов.
Определить ранг матрицы $A=\left(\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right)$.
Решение:
Поменяем местами первую и вторую строки матрицы А:
$A=\left(\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {-2} & {1} & {4} \\ {1} & {2} & {3} \end{array}\right)$
Умножим первую строку матрицы В на число 2 и сложим со второй строкой:
$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {-2} & {1} & {4} \\ {1} & {2} & {3} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {1} & {2} & {3} \end{array}\right)$
Умножим первую строку матрицы С на число -1 и сложим с третьей строкой:
$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {1} & {2} & {3} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {2} & {0} \end{array}\right)$
Умножим вторую строку матрицы D на число -2 и сложим с третьей строкой:
$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {2} & {0} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {0} & {-20} \end{array}\right)$
$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {0} & {-20} \end{array}\right)$ - матрица ступенчатого вида
Количество ненулевых диагональных элементов равно 3, следовательно, $rang=3$.