Курс высшей математики в вузах различается как продолжительностью изучения, так и наполнением тем для изучения. Но существует определенный неизменяемый перечень тем, обязательных для изучения студентами. Дадим краткую характеристику основным темам, которые изучаются на $1$ курсе вуза.
Линейная алгебра
Матрицы и действия над ними
Рассматриваются матрицы, которые содержат m строк и n столбцов.
Изучаются равные матрицы, квадратные, диагональные, единичные, треугольные и трапецевидные матрицы.
Над матрицами выполняются следующие виды действий:
- сложение матриц одинакового размера;
- умножение матрицы на вектор-столбец;
- умножение матрицы на число;
- умножение матриц, причем вводится понятие согласованности и транспортирования матриц;
Определитель квадратной матрицы
Рассматривается понятие определителя для матриц до 4-го порядка.
Основные свойства определителей:
- Если А и В являются квадратными матрицами, то $|AB|=|BA|=|A| \times |B|$. Причем $AB \ne BA$.
- $|A|=|A^T|$.
- Определитель равен нулю, если он содержит нулевой ряд или $2$ одинаковых параллельных ряда.
- Для диагональной и треугольной матриц определитель равен произведению чисел главной диагонали.
- Общий множитель любого ряда определителя можно вынести за его знак.
Рассматривается понятие минора и теорема Лапласа (о разложении определителя).
Обратная матрица
Алгоритм нахождения обратной матрицы при условии, что матрица $A$ – невырожденная и ее определитель не равен нулю:
- Каждый элемент матрицы заменяется его алгебраическим дополнением, получается союзная матрица.
- Союзная матрица транспонируется.
- Выполняется деление каждого элемента союзной матрицы на определитель матрицы.
Ранг матрицы рассматривается как максимальное число линейно-зависимых строк матрицы и наибольшее из порядков отличных от нуля миноров данной матрицы.
Свойства:
- Ранг матрицы не изменяется при транспонировании.
- При вычеркивании нулевого ряда ранг не изменяется.
- Ранг матрицы не изменяется при выполнении элементарных преобразований.
- Ранг треугольной матрицы равен числу ненулевых элементов, расположенных на главной диагонали.
Метод Крамера решения невырожденных систем СЛАУ
Уравнение $AX=B$, где $|A| \ne 0$ решается так:
$a_k=\frac{|A_k |}{|A|}$ , где $A_k$ можно получить из $A$ заменой какого столбца на столбец свободного члена $B$.
Вводится понятие расширенной матрицы, совместной и определенной системы уравнений, равносильных систем уравнений, однородной системы линейных уравнений.
Правило решения системы уравнений:
Найти ранг основной ($rA$) и расширенной ($r \bar{A}$):
- Если $rA \ne r \bar{A}$, то система несовместна;
- Если $rA=r \bar{A}=r$, то система совместна и находят базисный минор порядка $r$:
- берутся $r$ уравнений, из коэффициентов которых составляется базисный минор, остальные отбрасываются. Неизвестные, коэффициенты которых составляют минор, называются главными. Их записывают слева, а остальные $(n-r)$ – справа;
- выражают главные неизвестные через свободные и получают общее решение системы;
- свободным неизвестным дают произвольное значение и получают частные решения.
Элементы векторной алгебры
Векторы
Изучается понятие вектора, длина и направление вектора, противоположный вектор, нулевой вектор, коллинеарные и компланарные векторы.
Операции над векторами
Рассматриваются операции над векторами:
- умножение вектора на число;
- сумма векторов;
- скалярное, векторное и смешанное произведение векторов.
Аналитическая геометрия
Прямая на плоскости
Несколько видов уравнений описывают прямую на плоскости: уравнение с угловым коэффициентом, уравнение прямой через точку и направление, уравнение через 2 точки, уравнение в отрезках, уравнение через данную точку перпендикулярно вектору, нормальное уравнение прямой.
Традиционно рассматривается формула для нахождения угла между прямыми, условия перпендикулярности и параллельности прямых и расстояния от точки до прямой.
Плоскость в пространстве
Плоскость в пространстве задается с помощью различных видов уравнения: уравнение через точку перпендикулярно к вектору, уравнение через 3 точки, нормальное уравнение плоскости, уравнение в отрезках.
Рассматривается угол между плоскостями и расстояние от точки до плоскости.
Прямая в пространстве
Канонические уравнения прямой или уравнения прямой с направляющими коэффициентами, уравнения в параметрическом виде, общее и векторное уравнение прямой, уравнение прямой через 2 точки в пространстве. Формула угла между прямыми.
Взаимное расположение плоскостей, прямых и прямой и плоскости
Для каждого из вариантов расположения предлагается формула для нахождения угла между плоскостями, прямыми и прямой и плоскостью, а также условия параллельности и перпендикулярности плоскостей, прямых, прямой и плоскости.
Отдельно изучается пересечение прямой с плоскостью и условие принадлежности прямой плоскости.
Линии второго порядка
Эллипс
Кроме основного канонического уравнения эллипса изучаются понятия эксцентриситета и директрис.
Гипербола
Изучается каноническое уравнение гиперболы, уравнения асимптот, понятие эксцентриситета, директрисы и фокальных радиусов.
Парабола
Рассматривается понятие полуфокального диаметра параболы и каноническое уравнение параболы.
Изучение высшей математики на первом курсе, как правило, заканчивается изучением раздела «Линии второго порядка», но может варьироваться в зависимости от учебных планов, программ и специальностей.