Вронскиан
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
если всякое линейно упорядоченное подмножество частично упорядоченного множества M ограничено сверху, то M содержит максимальный элемент
В статье изучаются абстрактные алгебры Дынкина. Такие алгебры образуют полезный инструмент для обсуждения вероятностей в достаточно естественном контексте. Абстрактность означает отсутствие теоретико-множественной структуры элементов таких алгебр. Вводится полезный широкий класс абстрактных алгебр отделимые алгебры Дынкина и указывается простейший пример неотделимой алгебры. Свойство отделимости позволяет определить подходящие варианты булевых версий операций пересечения и объединения элементов. Такие операции в общем случае определены только частично. Доказываются некоторые свойства отделимых алгебр, которые используются для получения стандартных свойств пересечения и объединения, включая ассоциативность и дистрибутивность, в случае, когда соответствующие операции применимы. Установленные факты позволяют определить булевы подалгебры в отделимой алгебре Дынкина и проверить совпадение нашей версии определения с обычной.Наконец, формулируется и доказывается основной результат о строен...
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
соприкасающийся круг
дробная часть десятичного логарифма положительного числа
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне