
Пусть дана функция y = f(x), где х - независимая переменная. Дифференциал этой функции есть некоторая функция от х, но от х зависит только первый сомножитель f '(x) второй же сомножитель dx является приращением независимой переменной x и от значения этой переменной не зависит.
dy=f′(x)dx
Функция dy есть функция от x и называется дифференциалом.
Что такое дифференциал второго, третьего и n-го порядка функции
Дифференциал от дифференциала функции называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d2y.
d2y=d(dy)
Третьим дифференциалом или дифференциалом третьего порядка функции называется~дифференциал~от ее второго дифференциала:
d3y=d(d2y)=f‴
Дифференциалом n-го порядка является дифференциал от дифференциала (n-1)-го порядка:
d^ny = d(d^{n-1}y)
Найти дифференциал третьего порядка функции.
y(x)=x^{4} +2\arccos xРешение.
- По определению дифференциала, дифференциал 3 порядка равен: d^{3} y=y'''(x)dx^{3}
- Продифференцируем данную функцию по х: y'(x)=(x^{4} +2\arccos x)'=(x^{4} )'+2(\arccos x)'=4x^{3} -\frac{2}{\sqrt{1-x^{2} } }
- Вычислим вторую производную y''(x)=\left(4x^{3} -\frac{2}{\sqrt{1-x^{2} } } \right)^{{'} } =12x^{2} -2\left((1-x^{2} )^{-\frac{1}{2} } \right)^{{'} } =12x^{2} -2\frac{1}{2} (1-x^{2} )^{-\frac{3}{2} } (1-x^{2} )' y''(x)=12x^{2} -2x(1-x^{2} )^{-\frac{3}{2} }
- Вычислим третью производную y'''(x)=\left(12x^{2} -2x(1-x^{2} )^{-\frac{3}{2} } \right)^{{'} } =24x-\left(2(1-x^{2} )^{-\frac{3}{2} } +2x\left((1-x^{2} )^{-\frac{1}{2} } \right)^{{'} } \right) y'''(x)=\left(12x^{2} -2x(1-x^{2} )^{-\frac{3}{2} } \right)^{{'} } =24x-2(1-x^{2} )^{-\frac{3}{2} } -4\frac{3}{2} x^{2} (1-x^{2} )^{-\frac{5}{2} } y'''(x)=24x-\frac{2}{\sqrt{(1-x^{2} )^{3} } } -\frac{6x^{2} }{\sqrt{(1-x^{2} )^{5} } }
- Подставим полученную производную в формулу дифференциала второго порядка: d^{3} y=y'''(x)dx^{3} =\left(24x-\frac{2}{\sqrt{(1-x^{2} )^{3} } } -\frac{6x^{2} }{\sqrt{(1-x^{2} )^{5} } } \right)dx^{3}
Найти дифференциал 4 порядка функции.
y(x)=e^{4x} \sin 3xРешение.
- Запишем производную по формуле Лейбница y^{(4)} (x)=\left(e^{4x} \right)^{(4)} \sin 3x+C_{4}^{1} \left(e^{4x} \right)^{(3)} \sin 3x'+C_{4}^{2} \left(e^{4x} \right)^{(2)} \sin 3x''+C_{4}^{3} \left(e^{4x} \right){{'} } \sin 3x'''+e^{4x} \sin 3x^{(4)}
- Посчитаем коэффициенты при слагаемых C_{4}^{1} =\frac{4!}{1!(4-1)!} =\frac{4!}{3!} =\frac{3!4}{3!} =4 C_{4}^{2} =\frac{4!}{2!(4-2)!} =\frac{4!}{2!2!} =\frac{1\cdot 2\cdot 3\cdot 4}{1\cdot 2\cdot 1\cdot 2} =6 C_{4}^{3} =\frac{4!}{3!(4-3)!} =\frac{4!}{3!1!} =\frac{3!4}{3!} =4
- Найдем производные первого сомножителя \left(e^{4x} \right){{'} } =e^{4x} \cdot 4x'=4e^{4x} \left(e^{4x} \right){{'} } {{'} } =\left(4e^{4x} \right){{'} } =16e^{4x} \left(e^{4x} \right){{'} } {{'} } {{'} } =\left(16e^{4x} \right){{'} } =64e^{4x} \left(e^{4x} \right)^{(4)} =\left(64e^{4x} \right){{'} } {{'} } {{'} } =256e^{4x}
- Найдем производные второго сомножителя \sin 3x'=\cos 3x\cdot 3x'=3\cos 3x \sin 3x''=\left(3\cos 3x\right){{'} } =3\left(-\sin 3x\right)\cdot \left(3x\right){{'} } =-9\sin 3x \sin 3x'''=\left(-9\sin 3x\right){{'} } ^{} =-27\cos 3x \sin 3x^{(4)} =\left(-27\cos 3x\right){{'} } =81\sin 3x
- Подставим найденные значения в формулу Лейбница y^{(4)} (x)=256e^{4x} \sin 3x+4\cdot 64e^{4x} \cdot 3\cos 3x+6\cdot 16e^{4x} \cdot \left(-9\sin 3x\right)+4\cdot 4e^{4x} \cdot \left(-27\cos 3x\right)+e^{4x} \cdot 81\sin 3x
- Упростим y^{(4)} (x)=e^{4x} (336\cos 3x-527\sin 3x)
- Формула дифференциала 4 порядка имеет вид: d^{\left(4\right)} y=y^{(4)} (x)dx^{4} d^{\left(4\right)} y=e^{4x} (336\cos 3x-527\sin 3x)dx^{4}
Найти дифференциал 3 порядка функции
y=5^{2x-5}Решение.
Вычисления производим по формуле нахождения производной высшего порядка
\left(a^{kx+b} \right)^{(n)} =k^{n} a^{kx+b} \ln ^{n} aГде k = 2, b = -5, a = 5, n = 3
y^{(3)} =\left(5^{2x-5} \right)^{(3)} =2^{3} \cdot 5^{2x-5} \cdot \ln ^{3} 5 y^{(3)} =2^{3} \cdot 5^{2x-5} \cdot \ln ^{3} 5=\frac{8\cdot 25^{x} }{3125} \ln ^{3} 5Формула дифференциала 3 порядка имеет вид:
d^{\left(3\right)} y=y^{(3)} (x)dx^{3} d^{\left(3\right)} y=\frac{8\cdot 25^{x} }{3125} \ln ^{3} 5dx^{3}