Справочник от Автор24
Нужна помощь?
Найдем эксперта за 5 минут
Подобрать эксперта
+2

Дифференциалы различных порядков

Срочно нужна работа?
Мы готовы помочь!
Найти эксперта

Что такое дифференциал функции

Определение

Дифференциалом функции называется произведение производной этой функции на приращение независимой переменной.

Дифференциал функции обозначается dy и имеет запись вида:

$dy = f '(x) \Delta $х

Пусть дана функция y = f(x), где х - независимая переменная. Дифференциал этой функции есть некоторая функция от х но от х зависит только первый сомножитель f '(x) второй же сомножитель dx является приращением независимой переменной x и от значения этой переменной не зависит.

dy = f '(x)dx

Функция dy есть функция от x и называется дифференциалом.

Что такое второй, третий дифференциал

Определение

Дифференциал от дифференциала функции называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d2y.

$d^2y = d(dy)$

Определение

Третьим дифференциалом или дифференциалом третьего порядка функции называется дифференциал от ее второго дифференциала:

$d^3y = d(d2y) = f '''(x)dx^3$

Что такое дифференциал n-го порядка

Определение

Дифференциалом n-го порядка является дифференциал от дифференциала (n-1)-го порядка:

$d^ny = d(d^{n-1}y)$

Пользуясь дифференциалами различных порядков, производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:

\[f'(x)=\frac{dx}{dy} \] \[f^{n} (x)=\frac{d^{n} y}{dx^{n} } \]
Пример 1

Найти дифференциал функции.

\[d(2x^{3} +1)\]

Решение.

По правилу дифференцирования, дифференциал суммы равен сумме дифференциалов функций.

\[d(2x^{3} +1)=d(2x^{3} )+d(1)\]

Найдем производные данных функций и добавим к ним знак дифференциала. Производная второй функции так же как и дифференциал равна 0.

\[d(2x^{3} +1)=6x^{2} dx\]
Пример 2

Найти дифференциал второго порядка функции.

\[y(x)=x^{3} -\arccos x\]

Решение.

  1. По определению дифференциала, дифференциал второго порядка равен:
  2. \[d^{2} y=y''(x)dx^{2} \]
  3. Продифференцируем данную функцию по х:
  4. \[y'(x)=(x^{3} -\arccos x)'=(x^{3} )'-(\arccos x)'=3x^{2} +\frac{1}{\sqrt{1-x^{2} } } \]
  5. Вычислим вторую производную
  6. \[y''(x)=\left(3x^{2} +\frac{1}{\sqrt{1-x^{2} } } \right)^{{'} } =6x+\left((1-x^{2} )^{-\frac{1}{2} } \right)^{{'} } =6x-\frac{1}{2} (1-x^{2} )^{-\frac{3}{2} } (1-x^{2} )'\] \[y''(x)=6x+x(1-x^{2} )^{-\frac{3}{2} } \]
  7. Подставим полученную производную в формулу дифференциала второго порядка:
  8. \[d^{2} y=y''(x)dx^{2} =\left(6x+x(1-x^{2} )^{-\frac{3}{2} } \right)dx^{2} =\left(6x+\frac{x}{\sqrt[{}]{(1-x^{2} )^{3} } } \right)dx^{2} \]
Пример 3

Найти дифференциал второго порядка функции заданной неявно.

\[xy-y^{2} =3\]

Решение.

  1. Перенесем все члены функции в одну сторону
  2. \[xy-y^{2} -3=0\]
  3. Найдем первый дифференциал dy
  4. \[d\left(xy-y^{2} \right)-d\left(3\right)=0\]
  5. Дифференциал разности равен разности дифференциалов
  6. \[d\left(xy\right)-d\left(y^{2} \right)-d\left(3\right)=0\]
  7. Распишем дифференциал произведения и вычислим
  8. \[d\left(x\right)\cdot y+xdy-d\left(y^{2} \right)-d\left(3\right)=0\] \[ydx+xdy-2ydy-0=0\]
  9. Выразим dy
  10. \[dy\left(x-2y\right)=-ydx\] \[dy=-\frac{ydx}{x-2y} \]
  11. Вычислим дифференциал второго порядка по свойству частного:
  12. \[d^{2} y=d(dy)=d\left(-\frac{ydx}{x-2y} \right)\] \[d^{2} y=d\left(-\frac{y}{x-2y} \right)dx=\frac{d(-y)(x-2y)-(-y)\cdot d(x-2y)}{\left(x-2y\right)^{2} } dx\] \[d^{2} y=\frac{-dy(x-2y)+y\cdot d(x)-2dy}{\left(x-2y\right)^{2} } dx\]
  13. Выполним замену dy
  14. \[d^{2} y=\frac{-\frac{-ydx\left(x-2y\right)}{x-2y} +ydx-2ydy}{\left(x-2y\right)^{2} } dx\] \[d^{2} y=\frac{ydx+ydx-2ydy}{\left(x-2y\right)^{2} } dx=\frac{2ydx-2y\left(-\frac{ydx}{x-2y} \right)}{\left(x-2y\right)^{2} } dx\] \[d^{2} y=\frac{2ydx+\frac{2y^{2} }{x-2y} }{\left(x-2y\right)^{2} } dx=\frac{2ydx+2y^{2} }{\left(x-2y\right)^{3} } dx\] \[d^{2} y=\frac{2y(x+2y)+2y^{2} }{\left(x-2y\right)^{3} } dx^{2} =\frac{2xy+4y^{2} +2y^{2} }{\left(x-2y\right)^{3} } dx^{2} =\frac{2xy+6y^{2} }{\left(x-2y\right)^{3} } dx^{2} \] \[d^{2} y=\frac{2y\left(x+3y\right)dx^{2} }{\left(x-2y\right)^{3} } \]
Срочно нужна работа?
Мы готовы помочь!
Найти эксперта
Дата последнего обновления статьи: 15.12.2025