Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Определение правой и левой тройки векторов

Понятие тройки векторов

Из курса физики известно, что скалярные величины или скаляры - это величины, вполне определяемые одним численным значением (например, масса, температура, объём, расстояние и пр.). То есть любое вещественное число является скаляром.

Векторные величины или векторы - это величины, которые определяют и численным значением, и направлением. Например, скорость.

Линейно зависимыми называются такие векторы $a,b,c,...$, что если подобрать такие числа $x,y,z,...$, из которых по крайней мере одно не равно $0$, то будет иметь место тождество $xa+yb+zc+...=0$. Если три вектора $a,b,c$ не равны $0$ и линейно зависимы, то они компланарны.

Определение 1

Связка трёх векторов - это приведённая к общему началу тройка некомпланарных векторов $a,b,c$.

Определение правой и левой тройки векторов

Приведём чертёж правой связки.

Чертёж правой связки. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Чертёж правой связки. Автор24 — интернет-биржа студенческих работ

Рассмотрим кратчайшее вращение $\vec{OA}=a$ к $\vec{OB}=b$ на плоскости $OAB$ со стороны направления $\vec{OC}=c$. Мы увидим, что вращение идёт против часовой стрелки.

Если большой палец и указательный пальцы левой руки вытянуть, а средний согнуть под углом ладони, то три пальца в порядке большой-указательный-средний составят правую связку. Те же пальцы на левой руке составят левую связку.

На чертеже левой связки то же вращение идёт по часовой стрелке.

Чертеж левой связки. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Чертеж левой связки. Автор24 — интернет-биржа студенческих работ

«Определение правой и левой тройки векторов» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ

Способы преобразования правой связки в левую и обратно:

  1. перестановка местами двух любых векторов;
  2. изменение знака при одном из векторов;
  3. замена какого-нибудь вектора его зеркальным отображением относительно плоскости двух других векторов.

Правая и левая системы координат

Напомним, что координатная ось - это ось, на которой выбрано начало и единица масштаба.

Ортогональная или прямоугольная система координат в пространстве - это система из трёх взаимно перпендикулярных координатных осей $Ox, Oy$ и $Oz$ с общим началом $O$. Ортами в ортогональной системе координат называют единичные векторы (то есть векторы равные $1$).

Рассмотрим чертёж ортогональной системы координат в пространстве. Отметим на ней орты $i, j, k$.

Чертёж ортогональной системы координат в пространстве. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Чертёж ортогональной системы координат в пространстве. Автор24 — интернет-биржа студенческих работ

$i, j, k$ образуют правую связку. Система координат в данном случае называется правой.

Система координат называется левой, когда орты образуют левую связку. То есть:

Левая система координат. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Левая система координат. Автор24 — интернет-биржа студенческих работ

Подведём итог. В статье мы дали определение связки тройки векторов, описали правую и левую тройку векторов, а также правую и левую систему координат, как вытекающую тему из определения правой и левой тройки векторов. Стоит сказать, что на практике определение правой и левой тройки векторов со временем происходит интуитивно или "на автомате". Самое важное, это один раз понять, как это делается. Также стоит заметить, что чаще в задачах используется всё-таки правая тройка векторов и соответственно правая система координат.

Дата последнего обновления статьи: 17.04.2024
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot