Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Параллелепипед, сввойства прямоугольного параллелепипеда

Понятие параллелепипеда

Определение 1

Геометрическая фигура, образованная двумя равными параллелограммами, лежащими в параллельных плоскостях, а их вершины соединены между собой так, что между параллельными плоскостями образуются две пары параллелограммов, лежащих в параллельных плоскостях, называется параллелепипедом (рис. 1).

Параллелепипед

Рисунок 1. Параллелепипед

Параллелограммы, из которых составлен параллелепипед, называются гранями параллелепипеда, стороны параллелограммов -- сторонами параллелепипеда, а вершины параллелограммов -- вершинами параллелепипеда.

Свойства параллелепипеда

Противоположные грани параллелепипеда равны между собой и параллельны.

Доказательство.

Параллельность противоположных граней сразу исходит из определения 1.

Докажем равенство противоположных граней. Для этого рассмотрим рисунок 2.



Рисунок 2.

Рассмотрим грани ${AA}_1B_1B$ и ${DD}_1C_1C$. Так как, по определению 1, грани параллелепипеда -- параллелограммы, то ${AA}_1={DD}_1$ и $AB=DC.$ Так же ${AA}_1||{DD}_1$ и $AB||DC$, следовательно, $\overrightarrow{{AA}_1}\uparrow \uparrow \overrightarrow{{DD}_1}$ и $\overrightarrow{AB}\uparrow \uparrow \overrightarrow{DC}$, то есть $\angle A_1AB=\angle D_1DC$. Значит, по I признаку равенства треугольников$\triangle A_1AB=\triangle D_1DC$. Аналогично доказывается, что $\triangle D_1C_1C=\triangle A_1B_1B$, следовательно, $D_1C_1CD=A_1B_1BA$. Аналогично доказывается равенство других противоположных граней.

«Параллелепипед, сввойства прямоугольного параллелепипеда» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Теорема доказана.

Теорема 2

Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Доказательство.

Рассмотрим рисунок 3.



Рисунок 3.

Докажем вначале, что диагонали $A_1C$ и $D_1B$ делятся точкой пересечения $O$ пополам. По теореме 1, имеем $A_1D_1=BC$ и $A_1D_1||BC$. Следовательно, $A_1D_1CB$ -- параллелограмм. Тогда, по свойству параллелограмма, получим, что диагонали $A_1C$ и $D_1B$ делятся точкой пересечения $O$ пополам. Аналогично доказывается, что диагонали ${AC}_1$ и $D_1B$ и $A_1C$ и ${DB}_1$ делятся точками их пересечения пополам. Но, так как $O$ центр диагоналей $A_1C$ и $D_1B$, то все диагонали пересекаются в этой точке.

Теорема доказана.

Прямоугольный параллелепипед

Можно выделить два частных случая понятия параллелепипеда. Один из них -- понятие прямоугольного параллелепипеда.

Определение 2

Параллелепипед, у которого в основаниях лежат прямоугольники и все двугранные углы равны ${90}^0$ называется прямоугольным (рис. 4).

<a href=Прямоугольный параллелепипед">

Рисунок 4. Прямоугольный параллелепипед

Прямоугольный параллелепипед обладает теми же свойствами, что и произвольный, однако он помимо этого обладает отдельным свойством.

Теорема 3

Сумма квадратов трех измерений (высота, длина и ширина) равняется квадрату его диагонали.

Математически это можно записать следующим образом:

\[d^2=a^2+b^2+c^2\]



Рисунок 5.

Доказательство.

Рассмотрим рисунок 5. Докажем, для примера, что

Рассмотрим треугольник $ADC$. По теореме Пифагора, имеем

Так как $ABCD$ -- прямоугольник, то $DC=AB$, следовательно

Рассмотрим треугольник $ACC_1$. По теореме Пифагора, имеем

Так как ${CC}_1=AA_1$, то

Куб

Определение 3

Прямоугольный параллелепипед, гранями которого служат квадраты, называется кубом (рис. 6).



Рисунок 6.

Пример задачи

Пример 1

Найти длину диагонали куба, у которого высота равняется $3$.

Решение.

По определению куба, получим, что мы имеем прямоугольный параллелепипед, у которого и высота. И ширина и длина равны 3. Тогда, по теореме 3, имеем

\[d^2=3^2+3^2+3^2\] \[d^2=27\] \[d=3\sqrt{3}\]

Ответ: $3\sqrt{3}$.

Дата последнего обновления статьи: 19.04.2024
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot