Статистика: выборочное наблюдение
Выбери формат для чтения
Загружаем конспект в формате pptx
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
СТАТИСТИКА
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ
ВЫБОРОЧНОЕ НАБЛЮДЕНИЕ
ТЕСТЫ
1. Несплошное наблюдение, при котором статистическому обследованию
подвергаются единицы изучаемой совокупности, отобранные случайным способом,
называется:
А) монографическим;
Б) основного массива;
В) выборочным.
2. Выборочная совокупность – это часть генеральной совокупности:
А) случайно попавшая в поле зрения исследователя;
Б) состоящая из единиц, отобранных в случайном порядке;
В) состоящая из единиц, номера которых отобраны в случайном порядке.
3. Укажите, при соблюдении каких условий выборка будет репрезентативной,
представительной:
А) отбор единиц совокупности, при котором каждая из единиц получает
определенную, обычно равную вероятность попасть в выборку;
Б) достаточное количество отобранных единиц совокупности;
В) отбор единиц произвольный.
4. Отбор, при котором попавшая в выборку единица не возвращается в совокупность,
из которой осуществляется дальнейший отбор, является:
А) повторным;
Б) бесповторным.
5. Укажите основные способы отбора единиц в выборочную совокупность из
генеральной:
А) собственно-случайный;
Б) механический;
В) монографический;
Г) анкетный;
Д) типический;
Е) серийный.
6. Отклонение выборочных характеристик от соответствующих характеристик
генеральной совокупности, возникающее вследствие нарушения принципа
случайности отбора, называется:
А) случайной ошибкой;
Б) систематической ошибкой репрезентативности.
7. Отклонение выборочных характеристик от соответствующих характеристик
генеральной совокупности, возникающее вследствие несплошного характера
наблюдения, называется:
А) случайной ошибкой репрезентативности;
Б) систематической ошибкой репрезентативности.
8. Преимущество выборочного наблюдения перед сплошным состоит в более точном
определении обобщающих характеристик:
А) да;
Б) нет.
9. Выборочное наблюдение в сравнении со сплошным позволяет расширить
программу исследования:
А) да;
Б) нет.
10. Вычисленные параметры по выборочной совокупности:
А) характеризует саму выборку;
Б) точно характеризуют генеральную совокупность;
В) не точно характеризуют генеральную совокупность.
11. Ошибка выборки представляет собой
характеристик
выборочной
совокупности
совокупности:
А) да;
Б) нет.
12. Величина ошибки выборки зависит от:
А) величины самого вычисляемого параметра;
Б) единиц измерения параметра;
В) объема численности выборки.
возможные пределы отклонений
от
характеристик
генеральной
13. Размер ошибки выборки прямо пропорционален:
А) дисперсии признака;
Б) среднему квадратическому отклонению.
14. Величина ошибки выборки обратно пропорциональна:
А) численности единиц выборочной совокупности;
Б) квадратному корню из этой численности.
15. Увеличение доверительной вероятности:
А) увеличивает ошибку выборки;
Б) уменьшает ошибку выборки.
16. Механический отбор всегда бывает:
А) повторным;
Б) бесповторным.
17. Типический отбор применяется в тех случаях, когда генеральная совокупность:
А) неоднородна по показателям, подлежащим изучению;
Б) однородна по показателям, подлежащим изучению.
18. Укажите, связана ли величина t с объемом выборки:
А) связана;
Б) не связана.
19. Укажите, от чего зависит величина t:
А) от вероятности, с какой необходимо гарантировать пределы ошибки выборки;
Б) от объема генеральной совокупности.
20. Укажите, что произойдет с предельной ошибкой выборки, если дисперсию
увеличить в 4 раза:
А) уменьшится в 2 раза;
Б) увеличится в 2 раза;
Г) не изменится.
21. Укажите, что произойдет с предельной ошибкой выборки, если дисперсию
уменьшить в 4 раза, численность выборки увеличить в 9 раз, а вероятность исчисления
изменится с 0,683 до 0,997 (t = 1 и t = 3):
А) уменьшится в 18 раз;
Б) увеличится в 18 раз;
В) уменьшится в 2 раза;
Г) не изменится.
22. Механический отбор точнее собственно-случайного, поскольку он:
А) более сложно организован;
Б) всегда бесповторен.
23. Расположите по возрастанию точности следующие способы отбора:
А) собственно-случайный;
Б) механический;
В) типический;
Г) серийный (гнездовой).
24. Типический отбор точнее, поскольку он:
А) наиболее сложно организован;
Б) обеспечивает попадание в выборку представителей из выделенных групп в
генеральной совокупности.
25. Величина ошибки выборки при типическом отборе меньше, поскольку в ее расчете
используется:
А) общая дисперсия признака;
Б межгрупповая дисперсия;
В) средняя из внутригрупповых дисперсий.
26. Увеличение численности выборки в 4 раза:
А) уменьшает ошибку выборки в 2 раза;
Б) увеличивает ошибку выборки в 2 раза;
В) уменьшает ошибку выборки в 4 раза;
Г) увеличивает ошибку выборки в 4 раза;
Д) не изменяет ошибку выборки.
27. Величина ошибки выборки:
А) прямо пропорциональна ;
Б) обратно пропорциональна ;
В) обратно пропорциональна n.
28. Ошибка выборки при механическом отборе уменьшится в следующем случае:
А) если уменьшить численность выборочной совокупности;
Б) если увеличить численность выборочной совокупности.
29. Укажите, при
репрезентативность:
А) серийной;
Б) типической;
В) случайной;
Г) механической.
каком
виде
выборки
обеспечивается
наибольшая
30. По данным выборочного наблюдения оценивается среднее значение некоторой
величины. Укажите, в каком направлении изменится предельная ошибка оценки, если
доверительная вероятность увеличится:
А) уменьшится;
Б) увеличится;
В) не изменится.
31. В выборах мэра примут участие около 1 млн избирателей: кандидат Р. Будет
выбран, если за него проголосуют более 50 % избирателей. Накануне выборов
проведен опрос случайно отобранных 1000 избирателей: 540 из них сказали, что будут
голосовать за Р. Укажите, можно ли при уровне доверительной вероятности 0,954
утверждать, что Р. Победит на выборах:
А) можно;
Б) нельзя.
32. Исследуемая партия состоит из 5 тыс. деталей. Предполагается, что партия деталей
содержит 8 % бракованных. Определите необходимый объем выборки, чтобы с
вероятностью 0,997 установить долю брака с погрешностью не более 2 %:
А) 1650;
Б) 1244;
В) 1300.
33. Укажите, по какой формуле определяется предельная ошибка выборки средней при
типическом отборе для бесповторной выборки:
А) ;
Б)
В)
Г)
34. Укажите, по какой формуле определяется предельная ошибка выборки для доли
при механическом отборе:
А) ;
Б)
В)
Г)
35. Из партии готовой продукции методом случайного бесповторного отбора отобрано
250 изделий, из которых пять оказались бракованными. Определите с вероятностью
0,954 возможные пределы процента брака во всей партии. Объем выборки составляет
10 % всего объема готовой продукции:
А) 2% ± 1,68%;
Б) 10% ± 2%.
36. Малой выборкой называется выборочное наблюдение, объем которого:
А) не превышает 30 единиц;
Б) не превышает 50 единиц.
37. По данным 5%-ного выборочного обследования, дисперсия среднего срока
пользования краткосрочным кредитом 1-го банка 144, а 2-го 81. Число счетов 1-го
банка в 4 раза больше, чем 2-го. Ошибка выборки больше:
А) в 1-м банке;
Б) во 2-м банке;
В) ошибки одинаковы;
Г) предсказать невозможно.
38. По выборочным данным (10%-ный отбор) удельный вес счетов со сроком
пользования кредитом, превышающим 50 дней, в 1-м банке составил 5%, во 2-м банке
10%. При одинаковой численности счетов в выборочной совокупности ошибка
выборки больше:
А) в 1-м банке;
Б) во 2-м банке;
В) ошибки равны;
Г) данные не позволяют сделать вывод.
39. Укажите, по какой формуле можно определить необходимый объем выборки при
собственно случайном повторном отборе при определении доли признака:
А) ;
Б) .
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Пример 1.
Для определения средней цены товара А в порядке случайной выборки было
обследовано 100 торговых предприятий, в результате установлено, что средняя цена в
выборке товара А составила 57 руб. при среднеквадратическом отклонении 4 руб.
Установлено, что в выборочной совокупности 20 торговых предприятий торгуют
импортным товаром.
С вероятностью 0,954 определите пределы, в которых будет находиться средняя
цена товара А во всех торговых предприятиях, и долю предприятий, торгующих
импортным товаром.
Решение.
Поскольку общая численность генеральной совокупности торговых предприятий
не указана, расчет ошибки средней можно произвести только по формуле:
Тогда пределы, в которых находится средняя цена во всей совокупности торговых
предприятий, будут:
Таким образом, с вероятностью, равной 0,954 можно утверждать, что цена товара
А, продаваемого во всех торговых предприятиях, будет не менее 56 руб. 20 коп. и не
превысит величину 57 руб. 80 коп.
Доля торговых предприятий, торгующих импортным товаром, находится в
пределах:
Выборочная доля составит:
Ошибку выборки для доли определим по формуле:
.
.
С вероятностью 0,954 можно утверждать, что доля магазинов, торгующих
импортным товаром, во всей их совокупности будет находится в пределах
р = 20% ± 8%, или 12% ≤ р ≤ 28%.
Пример 2.
Для определения среднего срока пользования краткосрочным кредитом в банке
была проведена 10%-ная механическая выборка, в которую попало 200 счетов. В
результате обследования установлено, что средний срок пользования краткосрочным
кредитом 40 дней при среднеквадратическом отклонении 8 дней. В десяти счетах срок
пользования кредитом превышал 50 дней. С вероятностью 0,954 определить пределы,
в которых будет находиться срок пользования краткосрочным кредитом в генеральной
совокупности и доля счетов со сроком пользования краткосрочным кредитом более 50
дней.
Решение.
Средний срок пользования кредитом в банке находится в пределах:
.
Т.к. выборка механическая, то ошибка выборки определяется по формуле:
С вероятностью 0,954 можно утверждать, что срок пользования краткосрочным
кредитом в банке находится в пределах:
.
Доля кредитов со сроком пользования более 50 дней находится в пределах:
Выборочная доля составит:
05
Ошибку выборки для доли определим по формуле:
.
С вероятностью 0,954 можно утверждать, что доля кредитов в банке со сроком
пользования более 50 дней будет находится в пределах р = 5% ± 2,9%, или
2,1% ≤ р ≤ 7,9%.
Пример 3.
В результате 10%-ного выборочного обследования, проведенного по методу
пропорционального типического отбора, получены исходные данные (табл.).
Показатели
Работники государственных
предприятий и учреждений
Средняя
заработ ная
плат а, руб.
Число
обследованн
ых
работников,
чел.
Среднее
квадратичес
кое
отклонение,
руб.
Удельны й
вес ж енщин
в общей
численности
работников,
%
3900
400
800
40
С вероятностью
0,954 определите
пределы,600
в которых будет
средняя
Работники
частных
5600
1200 находится 50
заработная
предприятийплата работников, и долю женщин в общей численности работников.
Решение.
1. Определим среднюю заработную плату работников:
2. Вычислим среднюю из групповых дисперсий:
.
3. Определим предельную ошибку выборки по формуле:
- средняя дисперсия выборочной совокупности.
4. Средняя заработная плата работников находится в пределах:
Т.о., с вероятностью 0,954 можно гарантировать, что средняя заработная плата
работников в генеральной совокупности будет не менее 4856 руб. 50 коп., но не более
4983 руб. 50 коп.
5. Долю женщин в общей численности работников определим по формуле:
6. Выборочную дисперсию альтернативного признака вычислим по формуле:
.
Ошибку для доли определим по формуле:
7. Доля женщин в общей численности работников находится в пределах:
Следовательно, с вероятностью 0,954 можно утверждать, что доля женщин в
генеральной совокупности находится в пределах от 43 до 49 %.
Пример 4.
В одном из учебных заведений насчитывается 50 студенческих групп. С целью
изучения успеваемости студентов произведена 10%-ная серийная выборка, в которую
попали 5 групп студентов. В результате обследования установлено, что средняя
успеваемость в группах составила: 3,2; 3,4; 3,8; 4,0; 4,1 балла. С вероятностью 0,997
определите пределы, в которых будет находиться средний балл студентов учебного
заведения.
Решение.
Средний балл всех студентов находится в пределах:
.
Определим выборочную среднюю серийной выборки:
Дисперсию серийной выборки определим по формуле:
где - выборочная средняя каждой серии;
- выборочная средняя серийной выборки.
Значение дисперсии составляет:
Рассчитаем предельную ошибку выборки для средней по формуле:
где - межсерийная дисперсия; – число отобранных серий; – число серий в
генеральной совокупности.
С вероятностью 0,997 можно утверждать, что средний балл всех студентов
учебного заведения находится в пределах , или балла.
Пример 5.
Предприятие выпустило 100 партий готовой продукции А по 50 шт. в каждой из
них. Для проверки качества готовой продукции была проведена 10%-ная серийная
выборка, в результате которой установлено, что доля бракованной продукции
составила 12%. Дисперсия серийной выборки равна 0,0036.
С вероятностью 0,997 определите пределы, в которых находится доля бракованной
продукции А.
Решение.
Доля бракованной продукции А будет находится в пределах:
Определим предельную ошибку выборки для серийного отбора:
С вероятностью 0,997 можно утверждать, что доля бракованной продукции А
находится в пределах 6,6% ≤ р ≤ 17,4%.
Пример 6.
Определите численность рабочих, которую необходимо отобрать в выборочную
совокупность с тем, чтобы при изучении их средней заработной платы предельная
ошибка выборки не превышала 30 руб. с вероятностью 0,997, если по данным
предыдущего обследования среднее квадратическое отклонение составило 70 руб.
Решение.
Поскольку способ отбора не указан, расчет следует проводить по формуле для
повторного отбора:
Пример 7.
В городе Н проживает 100 тыс. чел. С помощью механической выборки
определите долю населения со среднедушевыми денежными доходами до 1500 руб. в
месяц. Какова должна быть численность выборки, чтобы с вероятностью 0,997 ошибка
выборки не превышала 2%, если на основе предыдущих обследований известно, что
дисперсия равна 0,24?
Решение.
Определим необходимую численность выборки по формуле:
Задачи для самостоятельного решения
Задача 1.
В результате выборочного обследования незанятого населения, ищущего работу,
осуществленного на основе собственно-случайной повторной выборки, получен
следующий ряд распределения (табл.).
Возраст, лет
до 25
25 - 35
35 - 45
45 - 55
55 и
более
Численность
15
37
71
45
22
лиц данного
С вероятностью 0,954 определите границы:
возраста
а) среднего возраста незанятого населения;
б) доли (удельного веса) лиц, моложе 25 лет, в общей численности незанятого
населения.
Задачи для самостоятельного решения
Задача 2.
Определите, сколько учащихся первых классов школ района необходимо отобрать в
порядке собственно-случайной бесповторной выборки, чтобы с вероятностью 0,997
определить границы среднего роста первоклассников с предельной ошибкой 2 см.
Известно, что всего в первых классах школ района обучается 1100 учеников, а
дисперсия роста по результатам аналогичного обследования в другом районе
составила 24.
Задачи для самостоятельного решения
Задача 3.
В целях изучения доходов населения по трем районам области сформирована 2%ная выборка, пропорциональная численности населения этих районов. Полученные
результаты представлены в табл.
Район
I
Численность
населения,
чел.
Обследова
но, чел.
120 000
2400
Доход в расчете на 1
человека
средняя,
тыс. руб.
дисперсия
2,9
1,3
II
170 000
3400
2,5
1,1
Определите границы среднедушевых доходов населения по области в целом при
III
90 000
1800
2,7
1,6
уровне вероятности 0,997.
Задачи для самостоятельного решения
Задача 4.
В целях контроля качества комплектующих из партии изделий, упакованных в 50
ящиков по 20 изделий в каждом, была произведена 10%-ная серийная выборка. По
попавшим в выборку ящикам среднее отклонение параметров изделия от нормы
соответственно составило 9; 11; 12; 8 и 14 мм. С вероятностью 0,954 определите
среднее отклонение параметров по всей партии в целом.
Задача 5.
Планируется обследование населения с целью определения средних расходов на
медицинские услуги и лекарственные средства. Определите необходимый объем
собственно-случайной бесповторной выборки, чтобы получить результаты с
точностью 10 руб. при уровне вероятности 0,954. Известно, что в районе проживает 73
тыс. человек, а пробное обследование показало, что среднее квадратическое
отклонение расходов населения на эти цели составляет 38 руб.