Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
СОДЕРЖАНИЕ
Тема 1. ВВЕДЕНИЕ 2
1. Основные положения и задачи учебной дисциплины Безопасность жизнедеятельности 2
2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ БЖД 3
3. ОПАСНОСТЬ. НОМЕНКЛАТУРА ОПАСНОСТЕЙ. ТАКСОНОМИЯ ОПАСНОСТЕЙ 3
Тема 2. КОНЦЕПЦИЯ ПРИЕМЛЕМОГО (ДОПУСТИМОГО) РИСКА 6
Понятие о концепции приемлемого (допустимого) риска 6
2. Управление риском. Системный анализ безопасности 6
3. Анализ причинно-следственных связей между реализованными опасностями и причинами 7
4.Логические операции при системном анализе безопасности 8
Тема 3. ПРИНЦИПЫ, МЕТОДЫ И СРЕДСТВА ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ДЕЯТЕЛЬНОСТИ 9
1. ПРИНЦИПЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ. КЛАССИФИКАЦИЯ. ОБЩИЕ ОПРЕДЕЛЕНИЯ 9
Ориентирующие принципы 9
Технические принципы. Технические принципы основаны на использовании физических законов и направлены на непосредственное предотвращение действия опасностей. 10
2. МЕТОДЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ. КЛАССИФИКАЦИЯ. ОПРЕДЕЛЕНИЯ 14
3. ОСНОВЫ УПРАВЛЕНИЯ БЕЗОПАСНОСТЬЮ ДЕЯТЕЛЬНОСТИ 15
4. ФУНКЦИИ УПРАВЛЕНИЯ БЖД 15
Тема 4. ПСИХОЛОГИЯ БЕЗОПАСТНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ (АНТРОПОГЕННЫЕ ОПАСНОСТИ) 16
1. Предмет и задачи психологии безопасности как научной дисциплины 16
2. Психические процессы и состояния 16
3. Особые психические состояния 17
4. Мотивация деятельности 21
5. Методы повышения безопасности 22
Тема 5. СОЦИАЛЬНЫЕ ОПАСНОСТИ 23
Классификация социальных опасностей 23
2. ПРИЧИНЫ СОЦИАЛЬНЫХ ОПАСНОСТЕЙ 23
3. ВИДЫ СОЦИАЛЬНЫХ ОПАСНОСТЕЙ 23
Тема. ЭКОЛОГИЧЕСКИЕ ОПАСНОСТИ 27
1. Экологические системы и их состояния 27
2. ИСТОЧНИКИ ЭКОЛОГИЧЕСКИХ ОПАСНОСТЕЙ 28
3. ТЯЖЕЛЫЕ МЕТАЛЛЫ 29
4. ПЕСТИЦИДЫ 30
5. ДИОКСИНЫ 31
6. СЕРЫ, ФОСФОРА И АЗОТА 31
7. ФРЕОНЫ 32
8. ПРОДУКТЫ ПИТАНИЯ 33
Природные опасности 35
1. Понятие о природных опасностях 35
2. ЛИТОСФЕРНЫЕ ОПАСНОСТИ ЗЕМЛЕТРЯСЕНИЯ 36
СЕЛИ 38
СНЕЖНЫЕ ЛАВИНЫ 38
ИЗВЕРЖЕНИЕ ВУЛКАНОВ 39
ОПОЛЗНИ 40
3. ГИДРОСФЕРНЫЕ ОПАСНОСТИ НАВОДНЕНИЯ 40
ЦУНАМИ 41
4. АТМОСФЕРНЫЕ ОПАСНОСТИ 42
ЗАЩИТА ОТ МОЛНИЙ 44
УРАГАНЫ 46
БУРЯ 46
5. КОСМИЧЕСКИЕ ОПАСНОСТИ 47
Тема 1. ВВЕДЕНИЕ
1. Основные положения и задачи учебной дисциплины Безопасность жизнедеятельности
Проблема защиты человека от опасностей в различных условиях его обитания возникла одновременно с появлением на Земле наших далеких предков. На заре человечества людям угрожали опасные природные явления, представители биологического мира. С течением времени стали появляться опасности, творцом которых стал сам человек. Статистические данные свидетельствуют, что в настоящее время он больше всего страдает от им же созданных опасностей. Только в дорожно-транспортных происшествиях в России ежегодно погибает более 30 тыс. чел. Десятки тысяч людей становятся ежегодно жертвами алкоголя. Тысячи человек погибают на производстве.
Ученые с древних времен изучают безопасность человека в различных условиях жизни и деятельности. Трудами многих ученых созданы научные предпосылки для разработки средств и методов защиты от опасностей. Комплексной научной дисциплиной, изучающей опасности и защиту от них человека, является безопасность жизнедеятельности (БЖД).
Основные положения учебной дисциплины БЖД:
1. С момента своего появления на Земле человек перманентно живет и действует в условиях постоянно изменяющихся потенциальных опасностей, поэтому деятельность человека потенциально опасна.
2. Реализуясь в пространстве и времени, опасности причиняют вред здоровью человека, который проявляется в нервных потрясениях, травмах, болезнях, инвалидных и летальных исходах. Следовательно, опасности — это то, что угрожает не только человеку, но и обществу и государству в целом. Значит, профилактика опасностей и защита от них — актуальнейшая гуманитарная и социально-экономическая проблема, в решении которой государство не может не быть заинтересованным.
3. Обеспечение безопасности деятельности — приоритетная задача для личности, общества, государства. Абсолютной безопасности не бывает. Всегда существует некоторый остаточный риск. Под безопасностью понимается такой уровень опасности, с которым на данном этапе научного и экономического развития можно смириться.
4. Безопасность — это приемлемый риск. Как достичь этой цели? Первейший и главнейший способ состоит в образовании народа. Другого пути просто нет. И вот почему. Опасности по своей природе вероятностны (т. е. случайны), потенциальны (т. е. скрыты), перманентны (т. е. постоянны, непрерывны) и тотальны (т. е. всеобщи, всеобъемлющи). Следовательно, нет на Земле человека, которому не угрожают опасности. Но зато есть множество людей, которые об этом не подозревают. Их сознание работает в режиме отчуждения от реальной жизни, так как оно не придает приоритетного значения информации, которая носит вероятностный характер.
5. Для выработки идеологии безопасности, формирования безопасного мышления и поведения в учебные планы подготовки специалистов любого профиля включена учебная дисциплина — безопасность жизнедеятельности (это область научных знаний, изучающая общие опасности, угрожающие каждому человеку и разрабатывающая соответствующие способы защиты от них в любых условиях обитания человека) БЖ не решает специальных проблем безопасности. Она обеспечивает общую грамотность в области безопасности, это научно-методический фундамент для всех без исключения специальных дисциплин безопасности. Человек, освоивший БЖД, надежно защищен от опасностей, не навредит другому, способен грамотно действовать в условиях опасности. БЖД — это не средство личной защиты, как полагают некоторые. БЖД — это защита личности, общества и государства. Введение БЖД в вузах (1990) и ОБЖ в школах (1991) — величайшее достижение советской образовательной системы в области безопасности.
БЖД решает три группы учебных задач: а) идентификация (распознавание) опасностей: вид опасности, пространственные и временные координаты, величина, возможный ущерб, вероятность и др.; б). профилактика идентифицированных опасностей на основе сопоставления затрат и выгод; в). в соответствии с концепцией остаточного риска часть идентифицированных опасностей может с определенной вероятностью реализоваться, следовательно, третья группа задач — это действия в условиях чрезвычайных ситуаций.
БЖД рассматривает все опасности, с какими может столкнуться человек в процессе своей жизни и деятельности.
Таким образом: 1) БЖД — неотъемлемая составная часть в общая образовательная компонента подготовки всесторонне развитой личности; 2) этот предмет должен входить в государственные образовательные стандарты всех специальностей и направлений без какого-либо исключения в интересах личности, общества, государства.
2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ БЖД
Безопасность жизнедеятельности — область научных знаний, изучающая опасности и способы защиты от них человека в любых условиях его обитания.
Безопасность — состояние деятельности, при котором с определенной вероятностью исключено проявление опасностей, или отсутствие чрезмерной опасности.
Деятельность — специфическая человеческая форма активного отношения к окружающему миру, содержание которой составляет его целесообразное изменение и преобразование. Всякая деятельность включает в себя цель, средство, результат и сам процесс деятельности. Формы деятельности многообразны. Они охватывают практические, интеллектуальные, духовные процессы, протекающие в быту, общественной, культурной, трудовой, научной, учебной и других сферах жизни.
Условия деятельности — совокупность факторов среды обитания, воздействующих на человека.
Здоровье — естественное состояние организма, характеризующееся его уравновешенностью с окружающей средой и отсутствием каких-либо болезненных изменений.
Идентификация опасности — процесс распознавания образа опасности, установления возможных причин, пространственных и временных координат, вероятности проявления, величины и последствий опасности.
Опасность — явления, процессы, объекты, свойства предметов, способные в определенных условиях причинить ущерб здоровью человека. Потенциальный — возможный, скрытый.
Причина — событие, предшествующее и вызывающее другое событие, именуемое следствием.
Риск — количественная оценка опасности. Определяется как частота или вероятность возникновения одного события при наступлении другого события. Обычно это безразмерная величина, лежащая в пределах от 0 до 1. Может определяться и другими удобными способами.
Ущерб здоровью — это заболевание, травмирование, следствием которого может стать летальный исход, инвалидность и т. п.
Система — совокупность элементов, взаимодействие между которыми адекватно цели.
Цель — то, что представляется в сознании и ожидается в результате определенных направленных действий
3. ОПАСНОСТЬ. НОМЕНКЛАТУРА ОПАСНОСТЕЙ. ТАКСОНОМИЯ ОПАСНОСТЕЙ
Опасность — центральное понятие БЖД, под которым понимаются любые явления, угрожающие жизни и здоровью человека. Количество признаков, характеризующих опасность, может быть увеличено или уменьшено в зависимости от целей анализа. Опасность хранят все системы, имеющие энергию, химически или биологически активные компоненты, а также характеристики, несоответствующие условиям жизнедеятельности человека.
Опасности носят потенциальный характер. Актуализация опасностей происходит при определенных условиях, именуемых причинами. Признаками, определяющими опасность, являются: угроза для жизни; возможность нанесения ущерба здоровью; нарушение условий нормального функционирования органов и систем человека. Опасность — понятие относительное.
Номенклатура — система названий, терминов, употребляемых в какой-либо отрасли науки, техники. В теории БЖД целесообразно выделить несколько уровней номенклатуры: общую, локальную, отраслевую, местную (для отдельных объектов) и др. В общую номенклатуру в алфавитном порядке включаются все виды опасностей: алкоголь, аномальная температура воздуха, аномальная влажность воздуха, аномальная подвижность воздуха, аномальное барометрическое давление, арборициды, аномальное освещение, аномальная ионизация воздуха, вакуум, взрыв, взрывчатые вещества, вибрация, вода, вращающиеся части машины, высота, газы, гербициды, глубина, гиподинамия, гипокинезия, гололед, горячие поверхности, динамические перегрузки, дождь, дым, движущиеся предметы, едкие вещества, заболевания, замкнутый объем, избыточное давление в сосудах, инфразвук, инфракрасное излучение, искры, качка, кинетическая энергия, коррозия, лазерное излучение, листопад, магнитные поля, микроорганизмы, медикаменты, метеориты, микроорганизмы, молнии (грозы), монотонность, нарушение газового состава воздуха, наводнение, накипь, недостаточная прочность, неровные поверхности, неправильные действия персонала, огнеопасные вещества, огонь, оружие (огнестрельное, холодное и т. д.), острые предметы (колющие, режущие), отравление, ошибочные действия людей, охлажденные поверхности, падение (без установленной причины), пар, перегрузка машин и механизмов, перенапряжение анализаторов, пестициды, повышенная яркость света, пожар, психологическая несовместимость, пульсация светового потока, пыль, рабочая поза, радиация, резонанс, сенсорная депривация, скорость движения и вращения, скользкая поверхность, снегопад, солнечная активность, солнце (солнечный удар), сонливость, статические перегрузки, статическое электричество, тайфуны, ток высокой частоты, туман, ударная волна, ультразвук, ультрафиолетовое излучение, умственное перенапряжение, ураган, ускорение, утомление, шум, электромагнитное поле, эмоциональный стресс, эмоциональная перегрузка, ядовитые вещества и др.
При выполнении конкретных исследований составляется номенклатура опасностей для отдельных объектов (производств, цехов, рабочих мест, процессов, профессий и т. п.). Полезность номенклатур состоит в том, что они содержат полный перечень потенциальных опасностей и облегчают процесс идентификации. Процедура составления номенклатуры имеет профилактическую направленность.
Таксономия — наука о классификации и систематизации сложных явлений, понятий, объектов. Поскольку опасность является понятием сложным, иерархическим, имеющим много признаков, таксономирование их выполняет важную роль в организации научного знания в области безопасности деятельности, позволяет глубже познать природу опасности. Термин “таксономия” предложил швейцарский ботаник О. Декандоль в 1813 г.
Совершенная, достаточно полная таксономия опасностей пока не разработана. Приведем лишь некоторые примеры. По происхождению различают 6 групп опасностей: природные, техногенные, антропогенные, экологические, социальные, биологические. По характеру воздействия на человека опасности можно разделить на 5 групп: механические, физические, химические, биологические, психофизиологические.
По времени проявления отрицательных последствий опасности делятся на импульсивные и кумулятивные.
По локализации опасности бывают: связанные с литосферой, гидросферой, атмосферой, космосом.
По вызываемым последствиям: утомление, заболевания, травмы, аварии, пожары, летальные исходы и т. д.
По приносимому ущербу: социальный, технический, экологический, экономический.
Сферы проявления опасностей: бытовая, спортивная, дорожно-транспортная, производственная, военная и др.
По структуре (строению): простые и производные, порождаемые взаимодействием простых.
По реализуемой энергии опасности делятся на активные и пассивные. К пассивным относятся опасности, активизирующиеся за счет энергии, носителем которой является сам человек. Это — острые (колющие и режущие) неподвижные элементы; неровности поверхности, по которой перемещается человек; уклоны, подъемы; незначительное трение между соприкасающимися поверхностями и др. Различают априорные признаки (предвестники) опасности и апостериорные признаки (следы) опасностей.
Идентификация - процесс обнаружения и установления количественных, временных, пространственных и иных характеристик, необходимых и достаточных для разработки профилактических и оперативных мероприятий, направленных на обеспечение жизнедеятельности. В процессе идентификации выявляются: номенклатура опасностей, вероятность их проявления, пространственная локализация (координаты), возможный ущерб и другие параметры, необходимые для решения конкретной задачи. Главное в идентификации заключается в установлении возможных причин проявления опасности. Полностью идентифицировать опасность очень трудно.
Условия в которых реализуются потенциальные опасности, называются причинами. Причины характеризуют совокупность обстоятельств, благодаря которым опасности проявляются и называются те или иные нежелательные последствия, ущерб. Формулы ущерба, или желательные последствия, разнообразны: травмы различной тяжести, заболевания, определяемые современными методами, урон окружающей среде и др.
Опасность, причины, следствия являются основными характеристиками таких событий, как несчастный случай, чрезвычайная ситуация, пожар и т. д. Триада “опасность — причины — нежелательные следствия” — это логический процесс развития, реализующий потенциальную опасность в реальный ущерб (последствие). Как правило, этот процесс является многопричинным. Одна и та же опасность может реализоваться в нежелательное событие через разные причины. В основе профилактики несчастных случаев по существу лежит поиск причин
Тема 2. КОНЦЕПЦИЯ ПРИЕМЛЕМОГО (ДОПУСТИМОГО) РИСКА
Понятие о концепции приемлемого (допустимого) риска
Традиционная концепция приемлемого (допустимого) риска техника безопасности базируется на категорическом императиве — обеспечить безопасность, не допустить никаких аварий. Как показывает практика, такая концепция неадекватна законам техносферы и может обернуться трагедией для людей потому, что обеспечить нулевой риск в действующих системах невозможно. Современный мир отверг концепцию абсолютной безопасности и пришел к концепции приемлемого (допустимого) риска, суть которой в стремлении к такой безопасности, которую приемлет общество в данный период времени. Восприятие общественностью риска и опасностей субъективно. Люди резко реагируют на события редкие, сопровождающиеся большим числом единовременных жертв.
В то же время частые события, в результате которых погибают единицы или небольшие группы людей, не вызывают столь напряженного отношения. Ежедневно на производстве погибает 40-50 человек, в целом по стране от различных опасностей лишаются жизни более 1000 человек в день. Но эти сведения менее впечатляют, чем гибель 5-10 человек в одной аварии или каком-либо конфликте. Это необходимо иметь в виду при рассмотрении проблемы приемлемого риска. Субъективность в оценке риска подтверждает необходимость поиска приемов и методологий, лишенных этого недостатка. По мнению специалистов, использование риска в качестве оценки опасностей предпочтительнее, чем использование традиционных показателей. Приемлемый риск сочетает в себе технические, экономические, социальные и политические аспекты и представляет некоторый компромисс между уровнем безопасности и возможностями ее достижения. Прежде всего, нужно иметь в виду, что экономические возможности повышения безопасности технических систем небезграничны. Затрачивая чрезмерные средства на повышение безопасности, можно нанести ущерб социальной сфере, например ухудшить медицинскую помощь.
При увеличении затрат технический риск снижается, но растет социальный. Суммарный риск имеет минимум при определенном соотношении между инвестициями в техническую и социальную сферы. Это обстоятельство и нужно учитывать при выборе риска, с которым общество пока вынуждено мириться. В некоторых странах, например в Голландии, приемлемые риски установлены в законодательном порядке. Максимально приемлемым уровнем индивидуального риска гибели обычно считается 10-6 в год. Пренебрежительно малым считается индивидуальный риск гибели 10-8 в год.
Максимально приемлемым риском для экосистем считается тот, при котором может пострадать 5% видов биогеоценоза. На самом деле приемлемые риски на 2-3 порядка “строже” фактических. Следовательно, введение приемлемых рисков является акцией, прямо направленной на защиту человека.
2. Управление риском. Системный анализ безопасности
Основным вопросом теории и практики безопасности является повышение уровня безопасности. Для этой цели средства можно расходовать по трем направлениям:
1. совершенствование технических систем и объектов;
2. подготовка персонала;
3. ликвидация последствий.
Для определения соотношения инвестиций по каждому из этих направлений необходим специальный анализ с использованием конкретных данных. Обоснованные данные необходимы для расчета риска. Острая потребность в данных в настоящее время признана во всем мире на национальном и международном уровне. Необходима тщательно аргументированная разработка базы и банков данных и их реализация в условиях предприятия, региона. В основе управления риском лежит методика сравнения затрат и получаемых выгод от снижения риска.
Последовательность изучения опасностей:
Стадия I — предварительный анализ опасности (ПАО).
Шаг 1. Выявить источники опасности.
Шаг 2. Определить части системы, которые могут вызвать эти опасности.
Шаг 3. Ввести ограничения на анализ, т. е. исключить опасности, которые не будут изучаться.
Стадия II — выявление последовательности опасных ситуаций, построение дерева событий и опасностей.
Стадия III — анализ последствий.
Системный анализ — это совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам, в данном случае, безопасности. Система — это совокупность взаимосвязанных компонентов, взаимодействующих между собой таким образом, что достигается определенный результат (цель). Под компонентами (элементами, составными частями) системы понимаются не только материальные объекты, но и отношения и связи. Любая машина представляет пример технической системы. Система, одним из элементов которой является человек, называется эргатической. Примеры эргатической системы: “человек-машина”, “человек-машина-окружающая среда” и т. п. Любой предмет может быть представлен как системное образование. Принцип системности рассматривает явления в их взаимной связи, как целостный набор или комплекс. Цель или результат, который дает система, называют системообразующим элементом. Например, такое системное явление, как горение (пожар), возможно при наличии следующих компонентов: горючее вещество, окислитель, источник воспламенения. Исключая хотя бы один из названных компонентов, мы разрушаем систему.
Системы имеют качества, которых может не быть у элементов, их образующих. Это важнейшее свойство систем, именуемое эмерджентностью, лежит, по существу, в основе системного анализа вообще и проблем безопасности, в частности. Методологический статус системного анализа необычен: в нем переплетаются элементы теории и практики, строгие формализованные методы сочетаются с интуицией и личным опытом, с эвристическими приемами. Цель системного анализа безопасности состоит в том, чтобы выявить причины, влияющие на появление нежелательных событий (аварий, катастроф, пожаров, травм и т. п.), и разработать предупредительные мероприятия, уменьшающие вероятность их появления.
3. Анализ причинно-следственных связей между реализованными опасностями и причинами
Любая опасность реализуется, принося ущерб, благодаря какой-то причине или нескольким причинам. Без причин нет реальных опасностей. Следовательно, предотвращение опасностей или защита от них базируется на знании причин. Между реализованными опасностями и причинами существует причинно-следственная связь; опасность есть следствие некоторой причины (причин), которая, в свою очередь, является следствием другой причины и т. д. Таким образом, причины и опасности образуют иерархические, цепные структуры или системы. Графическое изображение таких зависимостей чем-то напоминает ветвящееся дерево. В зарубежной литературе, посвященной анализу безопасности объектов, используются такие термины, как “дерево причин”, “дерево отказов”, “дерево опасностей”, “дерево событий”. В строящихся деревьях, как правило, имеются ветви причин и ветви опасностей, что полностью отражает диалектический характер причинно-следственных связей. Разделение этих ветвей нецелесообразно, а иногда и невозможно. Поэтому точнее называть полученные в процессе анализа безопасности объектов графические изображения “деревьями причин и опасностей”.
Построение “деревьев” является исключительно эффективной процедурой выявления причин различных нежелательных событий (аварий, травм, пожаров, дорожно-транспортных происшествий и т. д.).
Многоэтапный процесс ветвления “дерева” требует введения ограничений с целью определения его пределов. Эти ограничения целиком зависят от целей исследования. В общем, границы ветвления определяются логической целесообразностью получения новых ветвей.
4.Логические операции при системном анализе безопасности
Логические операции принято обозначать соответствующими знаками. Чаще всего употребляются операции “И” и “ИЛИ”. Операция (или вентиль) “И” указывает, что для получения данного выхода необходимо соблюсти все условия на входе. Вентиль “ИЛИ” указывает, что для получения данного выхода должно быть соблюдено хотя бы одно из условий на входе.
Методы анализа. Анализ безопасности может осуществляться априорно или апостериорно, т. е. до или после нежелательного события. В обоих случаях используемый метод может быть прямым и обратным.
Априорный анализ. Исследователь выбирает такие нежелательные события, которые являются потенциально возможными для данной системы, и пытается составить набор различных ситуаций, которые могут привести к их появлению. Апостериорный анализ. Выполняется после того, как нежелательные события уже произошли. Цель такого анализа – разработка рекомендаций на будущее. Априорный и апостериорный анализы дополняют друг друга. Прямой метод анализа состоит в изучении причин, чтобы предвидеть последствия. При обратном методе анализируются последствия, чтобы определить причины, т. е. анализ начинается с венчающего события. Конечная цель всегда одна – предотвращение нежелательных событий. Имея вероятность и частоту возникновения первичных событий, можно, двигаясь снизу вверх, определить вероятность венчающего события. Основной проблемой при анализе безопасности – установление параметров или границ системы в зависимости от конкретных целей анализа.
Тема 3. ПРИНЦИПЫ, МЕТОДЫ И СРЕДСТВА ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ДЕЯТЕЛЬНОСТИ
1. ПРИНЦИПЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ. КЛАССИФИКАЦИЯ. ОБЩИЕ ОПРЕДЕЛЕНИЯ
Принцип — это идея, мысль, основное положение. Метод — это путь, способ достижения цели, исходящий из знания наиболее общих закономерностей. Принципы и методы обеспечения безопасности являются специальными в отличие от общих методов, присущих диалектике и логике. Методы и принципы определенным образом взаимосвязаны. Средства обеспечения безопасности — это конструктивное, организационное, материальное воплощение, конкретная реализация принципов и методов. Принципы, методы, средства — логические этапы обеспечения безопасности, их выбор их зависит от конкретных условий деятельности, уровня безопасности, стоимости и других критериев. Принципов обеспечения безопасности много. Их можно классифицировать по нескольким признакам. По признаку реализации их условно делят на 4 класса (табл.1)..
Таблица 1. Принципы обеспечения безопасности труда
Ориентирующие
Технические
Организационные
Управленческие
1. Активности оператора;
1. Блокировки;
1. Защиты временем;
1. Адекватности;
2.Гуманизации деятельности;
2. Вакуумирования;
2. Информации;
2. Компенсации;
3. Деструкции;
3. Герметизации;
3. Несовместимости;
3. Контроля;
4. Замены оператора;
4. Защиты расстоянием; .
4. Нормирования;
4. Обратной связи;
б. Классификации;
5. Компрессии;
5. Подбора кадров;
5. Ответственности;
6. Ликвидации опасности;
6. Прочности;
6. Последовательности;
6. Плановости;
7. Системности;
7. Слабого звена;
7. Резервирования;
7. Стимулирования;
8. Снижения опасности.
8. Флегматизации;
8. Эргономичности.
8. Эффективности.
9.Экранирования.
Ориентирующие принципы
Ориентирующие принципы представляют собой основополагающие идеи, определяющие направление поиска безопасных решений и служащие методологической и информационной базой.
Принцип системности состоит в том, что любое явление, действие, всякий объект рассматривается как элемент системы. Под системой понимается совокупность элементов, взаимодействие между которыми адекватно однозначному результату. Такую систему будем называть определенной. Если же совокупность элементов взаимодействует так, что возможны различные результаты, то система называется неопределенной. Причем уровень неопределенности системы тем выше, чем больше различных результатов может появиться. Неопределенность порождается неполным учетом элементов и характером взаимодействия между ними.
К элементам системы относятся материальные объекты, а также отношения и связи, существующие между ними. Различают естественные и искусственные системы. При конструировании искусственных систем сначала задаются реальной целью, которую необходимо достичь, и определяют элементы, образующие систему. Задача сводится по существу к тому, чтобы на естественную систему, ведущую к нежелательному результату, наложить искусственную систему, ведущую к желаемой цели. При этом положительная цель достигается за счет исключения элементов из естественной системы или нейтрализации их элементами искусственной системы. Можно, следовательно, говорить о системах и контрсистемах. Принцип системности в вопросах безопасности реализуется в различных формах. Принцип системности отражает универсальный закон диалектики о взаимной связи явлений и ориентирует на учет всех элементов, формирующих рассматриваемый результат, на полный учет обстоятельств и факторов для обеспечения безопасности жизнедеятельности.
Принцип деструкции (от латинского destructio — разрушение) заключается в том, что система, приводящая к опасному результату, разрушается за счет исключения из нее одного или нескольких элементов. Он имеет универсальное значение. При анализе безопасности, учитывая принцип деструкции, разрабатывают мероприятия, направленные на исключение некоторых элементов, что приводит к желаемой цели..
Принцип снижения опасности заключается в использовании решений, которые направлены на повышение безопасности, но не обеспечивают достижения желаемого или требуемого по нормам уровня. Этот принцип носит компромиссный характер.
Принцип ликвидации опасности состоит в устранении опасных и вредных факторов, что достигается изменением технологии, заменой опасных веществ безопасными, применением более безопасного оборудования, совершенствованием научной организации труда и другими средствами. Этот принцип наиболее прогрессивен по своей сути и весьма многолик по формам реализации. С поиска способов реализации именно этого принципа следует начинать как теоретические, так и практические работы по повышению уровня безопасности жизнедеятельности.
Технические принципы. Технические принципы основаны на использовании физических законов и направлены на непосредственное предотвращение действия опасностей.
Принцип защиты расстоянием заключается в установлении такого расстояния между человеком и источником опасности, при котором обеспечивается заданный уровень безопасности. Принцип основан на том, что действие опасных и вредных факторов ослабевает по тому или иному закону или полностью исчезает в зависимости от расстояния.
Противопожарные разрывы. Чтобы избежать распространения пожара, здания, сооружения и другие объекты располагают на определенном расстоянии друг от друга. Эти расстояния называют противопожарными разрывами.
Санитарно-защитные зоны. Для защиты жилых застроек от вредных и неприятно пахнущих веществ, повышенных уровней шума, вибраций, ультразвука, электромагнитных волн радиочастот, статического электричества, ионизирующих излучений предусматриваются санитарно-защитные зоны.
Санитарно-защитная зона — это пространство между границей жилой застройки и объектами, являющимися источниками вредных факторов. Размер санитарно-защитной зоны устанавливается в соответствии с санитарной классификацией предприятий. Для предприятий классов I, II, III, IV, V размеры санитарно-защитных зон соответственно составляют 2000, 1000, 500, 300, 100 м. Размеры санитарно-защитных зон могут быть увеличены или уменьшены при надлежащем технико-экономическом и гигиеническом обосновании.
Расстояние от наиболее удаленного рабочего места до эвакуационного выхода. Для того чтобы люди во время пожара могли беспрепятственно и безопасно покинуть здание, регламентируется кратчайшее расстояние от рабочего места до выхода наружу.
Защита от электрического тока. Защита от прикосновения к токоведущим частям электрических установок достигается, в частности, недоступным расположением токоведущих частей. Защита от ионизирующих Излучений и ЭМП также обеспечивается расстоянием.
Принцип прочности состоит в том, что в целях повышения уровня безопасности усиливают способность материалов, конструкций и их элементов сопротивляться разрушениям и остаточным деформациям от механических воздействий. Реализуется принцип прочности при помощи так называемого коэффициента запаса прочности, который представляет собой отношение опасной нагрузки, вызывающей недопустимые деформации или разрушения, к допускаемой нагрузке. Величину коэффициента запаса прочности устанавливают исходя из характера действующих усилий и напряжений (статический, ударный), механических свойств материала, опыта работы аналогичных конструкций и других факторов.
Принцип слабого звена состоит в применении в целях безопасности ослабленных элементов конструкций или специальных устройств, которые разрушаются или срабатывают при определенных предварительно рассчитанных значениях факторов, обеспечивая сохранность производственных объектов и безопасность персонала.
Принцип экранирования состоит в том, что между источником опасности и человеком устанавливается преграда, гарантирующая защиту от опасности. При этом функция преграды состоит в том, чтобы препятствовать прохождению опасных свойств в гомосферу. Применяются, как правило, разнообразные по конструкции сплошные экраны.
Защита от тепловых излучений. Распространено применение экранов для защиты от тепловых облучений. При этом различают экраны отражения, поглощения и теплоотвода. Для устройства экранов отражения используют светлые материалы: алюминий, белую жесть, алюминиевую фольгу, оцинкованное железо. Теплоотводящие экраны изготовляют в виде конструкций с пространством (змеевиком) с находящейся в нем проточной водой. Теплопоглощающие экраны изготовляют из материала с большой степенью черноты. Если необходимо обеспечить возможность наблюдения (кабины, пульты управления), применяют прозрачные экраны, выполненные из многослойного или жаропоглощающего стекла или других конструкций. Прозрачным теплопоглощающим экраном служат и водяные завесы, которые могут быть двух типов: переливные (вода подается сверху) и напорные (с подачей воды снизу под давлением).
Защита от ионизирующих излучений. Защитное экранирование широко применяется для защиты от ионизирующих излучений. Оно позволяет снизить облучение до любого заданного уровня. Материал, применяемый для экранирования, и толщина экрана зависят от природы излучения (альфа, бета, гамма, нейтроны). Толщина экрана рассчитывается на основе законов ослабления излучений в веществе экрана. Альфа-частицы имеют небольшую величину пробега и легко поглощаются стеклом, плексигласом, фольгой любой толщины. Для защиты от бета-излучений применяют материалы с небольшим атомным номером, для поглощения жестких бета-лучей применяют свинцовые экраны с внутренней облицовкой алюминием. Для ослабления гамма-излучения чаще всего используют элементы с высоким атомным номером и высокой плотностью: свинец, вольфрам, бетон, сталь. Нейтроны высокой энергии сначала замедляют до тепловых при помощи водородосодержащих веществ (тяжелая вода, парафин, пластмассы, полиэтилен), а затем поглощают медленные нейтроны при помощи материалов, имеющих большое сечение поглощения (борнит, графит, кадмий и др.).
Защита от электромагнитных излучений. Экранирование используется для защиты от электромагнитных полей. В этом случае применяют материалы с высокой электрической проводимостью (медь, алюминий, латунь) в виде листов толщиной не менее 0,5 мм или сетки с ячейками размером не более 4х4 мм. Электромагнитное поле ослабляется металлическим экраном в результате создания в его толще поля противоположного направления.
Защита от вибраций и шума. Одним из эффективных способов защиты от вибраций, вызываемых работой машин и механизмов, является виброизоляция. Роль своеобразного экрана здесь выполняют амортизаторы (виброизоляторы), представляющие собой упругие элементы, размещенные между машиной и ее основанием. Энергия вибрации поглощается амортизаторами, а это уменьшает передачу вибраций на основание.
Экраны используют для защиты работающих от прямого воздействия шума. Акустический эффект экрана основан на образовании за ним области тени, куда звуковые волны проникают лишь частично. Причем справедлива такая зависимость; чем больше длина звуковой волны, тем меньше при данных размерах экрана область тени. Следовательно, применение экранов эффективно для защиты от средне- и высокочастотных шумов. На низких частотах за счет эффекта дифракции звук огибает экраны, не создавая аэродинамической тени.
Система индивидуальной защиты (СИЗ). Принцип экранирования используется в СИЗ (очки, щитки).
Управленческие принципы. Управленческими называются принципы, определяющие взаимосвязь и отношения между отдельными стадиями и этапами процесса обеспечения безопасности.
Принцип плановости означает установление на определенные периоды направлений и количественных показателей деятельности. В соответствии с рассматриваемым принципом должны устанавливаться конкретные количественные задания на различных иерархических уровнях на основе контрольных цифр. Планирование в области безопасности должно ориентироваться на достижение конечных результатов, выраженных в показателях, характеризующих непосредственно условия труда
Принцип стимулирования означает учет количества и качества затраченного труда и полученных результатов при распределении материальных благ и моральном поощрении. Он реализует такой важный фактор, как личный интерес.
Принцип компенсации состоит в предоставлении различного рода льгот с целью восстановления нарушенного равновесия психических и психофизиологических процессов или предупреждения нежелательных изменений в состоянии здоровья. Компенсации предусматриваются рабочим, военнослужащим и другим категориям лиц. Одним из видов компенсации является повышение тарифных ставок для работающих на горячих, тяжелых и вредных работах примерно на 13%, а для работающих на особо тяжелых и особо вредных работах — на 30-33% выше, чем для работающих в нормальных условиях. Работающим в особо вредных условиях выдается бесплатно лечебно-профилактическое питание для укрепления здоровья и предупреждения профессиональных заболеваний. Разработано 5 научно обоснованных рационов лечебно-профилактического питания, применяемых в зависимости от особенностей вредностей. Лечебно-профилактическое питание выдается обычно в виде горячих завтраков перед началом работы или во время обеденного перерыва. Калорийность дневного рациона составляет 1364-1481 калорий. Значительному числу рабочих и служащих, занятых на работах с вредными условиями труда, в дни работы выдается 0,5 л молока или равноценные ему продукты. На работах, связанных с загрязнением тела, выделяется бесплатно по установленным нормам мыло. Для защиты кожного покрова рук и лица в необходимых случаях выдаются различные мази (пасты), синтетические поверхностно-активные моющие вещества, хорошо смывающие грязь, но не раздражающие кожу. Обеспечение безопасности связано с применением СИЗ.
Принцип эффективности состоит в сопоставлении фактических результатов с плановыми и оценке достигнутых показателей по критериям затрат и выгод. В области безопасности различают социальную, инженерно-техническую и экономическую эффективность. Функция эффективности в безопасности весьма специфична. Основное значение имеет организующая роль принципа эффективности.
Организационные принципы. К организационным относятся принципы, реализующие в целях безопасности положения научной организации деятельности.
Принцип защиты временем предполагает сокращение до безопасных значений длительности нахождения яюдей в условиях воздействия опасности. Этот принцип имеет значение при защите от ионизирующих излучений, от шума, при установлении продолжительных отпусков и в других случаях. Рассмотрим несколько примеров.
Отпуск. Все трудящиеся получают оплачиваемый отпуск. Это снимает накопившуюся усталость и способствует улучшению здоровья и повышению жизненного тонуса. Продолжительность рабочего дня. Там, где пока не устранены вредные условия труда, действующее законодательство предусматривает систему компенсаций профессиональных вредностей. Одним из видов компенсаций является сокращение продолжительности рабочего дня.
Предотвращение взрывов. Большую опасность представляют баллоны с агрессивными сжиженными газами при их длительном хранении. Имеющаяся влага с течением времени реагирует с газом. Образующиеся при этом побочные газообразные продукты увеличивают давление в баллоне. Одновременно происходит коррозия внутренних стенок баллона, сопровождающаяся образованием водорода и солей, забивающих сифонную трубку. Снять избыточное давление в таком баллоне уже невозможно. По этой причине нельзя длительно хранить баллоны со сжиженными газами.
Защита от гидравлических ударов. При внезапной остановке движущейся в трубопроводе жидкости происходит резкое повышение давления, под воздействием которого трубопровод может разрушиться. При постепенном закрывании запорных приспособлений повышение давления в трубопроводе зависит определенным образом от продолжительности закрывания задвижек: с увеличением времени давление понижается. Поэтому в трубопроводах с большими скоростями применяют постепенно закрывающиеся задвижки с большим числом оборотов маховичка. Таким образом, безопасность в данном случае достигается блокировкой временем.
Принцип нормирования состоит в регламентации условий, соблюдение которых обеспечивает заданный уровень безопасности. Нормы являются исходными данными для расчета и организации мероприятий по обеспечению безопасности. При нормировании учитываются психофизические характеристики человека, а также технические и экономические возможности. Лимитирующим показателем при нормировании вредных факторов является отсутствие патологических изменений в состоянии здоровья. Так содержание вредных веществ в воздухе рабочей зоны нормируется предельно допустимыми концентрациями (ПДК). ПДК — это такие концентрации, которые при установленной продолжительности работы в течение всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья. Эти концентрации являются максимально разовыми. ПДК устанавливаются также для атмосферного воздуха населенных пунктов. В этом случае используются максимально разовые и среднесуточные концентрации. Установлены предельно допустимые концентрации вредных веществ в водоемах санитарно-бытового водопользования, для почв, продуктов, т. д.
Параметры микроклимата. Нормируются оптимальные и допустимые значения температуры, относительной влажности и скорости движения воздуха для различных условий деятельности.
Шум. Для шумов устанавливаются допустимые уровни звукового давления в дБ в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц, а также уровни звука и эквивалентные уровни звука в дБА. При нормировании шумов учитывается характер объектов и род выполняемой работы.
Освещенность. В нормировании освещенности определяющим является размер объекта различения (мм), по которому определяют разряд зрительной работы. Естественная освещенность нормируется коэффициентом естественной освещенности. Для бокового освещения нормируется минимальное значение, а для верхнего и комбинированного — среднее. Наименьшая искусственная освещенность на рабочих поверхностях в производственных помещениях устанавливается с учетом фона, контраста объекта с фоном, применяемых ламп и вида освещения.
Рабочее время и время отдыха. Формой нормирования является регламентация продолжительности рабочего дня, рабочей недели, производственного стажа, а также перерывов в работе и отпусков.
Компенсационные льготы. Установлены нормы выдачи спецодежды, мыла, молока, лечебно-профилактического питания.
Средства защиты – нормативные требования к устройству ограждений, заземлений и других средств защиты.
Вибрация. Вибрация нормируется по уровням в октавных полосах со среднегеометрическими частотами от 1 до 2000 Гц. Различают при этом локальную и общую вибрации для различных условий.
Переноска тяжестей. Несмотря на широкое внедрение механизации трудоемких работ, все еще существует необходимость в переноске тяжестей. Поэтому установлены предельные нормы переноски тяжестей для женщин:
• подъем и перемещение тяжестей при чередовании с другой работой (до 2 раз в час) — 10 кг;
• подъем и перемещение тяжестей постоянно в течение рабочей смены — 7 кг;
• величина динамической работы, совершаемой в течение каждого часа рабочей смены, не должна превышать; с рабочей поверхности 1750 кгм, с пола 875 кгм.
Принцип несовместимости заключается в пространственном и временном разделении объектов реального мира (веществ, материалов, оборудования, помещений, людей), основанном на учете природы их взаимодействия с позиций безопасности. Такое разделение преследует цель исключить возникновение опасных ситуаций, порождаемых взаимодействием объектов. Этот принцип весьма распространен в различных областях техники.
Зонирование территории. В целях повышения взрывопожаробезопасности и улучшения санитарного состояния при разработке генеральных планов предприятий применяется зонирование территории. Сущность зонирования заключается в территориальном объединении в группы (зоны) различных объектов, входящих в состав предприятия по признаку технологической связи и характеру присущих им опасностей и вредностей. Выделяют следующие зоны: предзаводскую, подсобную, складскую, сырьевую и товарных емкостей. Предзаводская зона включает заводоуправление, проходную, столовую, пожарное депо, стоянки транспорта. В производственной зоне находятся производственные и вспомогательные здания и сооружения. Подсобная зона объединяет ремонтно-механические, ремонтно-строительные и тарные цехи, центральную заводскую лабораторию и др. Складская зона содержит склады материальные, оборудования, химикатов, масел, готовой продукции. Зона сырьевых и товарных емкостей предназначается для складов горючих и легковоспламеняющихся жидкостей и газов.
Принцип эргономичности состоит в том, что для обеспечения безопасности учитываются антропометрические, психофизические и психологические свойства человека. Антропометрические требования сводятся к учету размеров и позы человека при проектировании оборудования, рабочих мест, мебели, одежды, СИЗ и др.
2. МЕТОДЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ. КЛАССИФИКАЦИЯ. ОПРЕДЕЛЕНИЯ
Гомосфера — пространство (рабочая зона), где находится человек в процессе рассматриваемой деятельности. Ноксосфера — пространство, в котором постоянно существуют или периодически возникают опасности. Совмещение гомосферы и ноксосферы недопустимо с позиций безопасности. Обеспечение безопасности достигается тремя основными методами. Метод А состоит в пространственном и (или) временном разделении гомосферы и ноксосферы. Это достигается средствами дистанционного управления, автоматизации, роботизации, организации и др. Метод Б состоит в нормализации ноксосферы путем исключения опасностей. Это совокупность мероприятий, защищающих человека от шума, газа, пыли, опасности травмирования и т. п. средствами коллективной защиты. Метод В включает гамму приемов и средств, направленных на адаптацию человека к соответствующей среде и повышению его защищенности. Данный метод реализует возможности профотбора, обучения, психологического воздействия, СИЗ. В реальных условиях реализуется комбинация названных методов.
Средства обеспечения безопасности делятся на средства коллективной (СКЗ) и индивидуальной защиты (СИЗ). В свою очередь СКЗ и СИЗ делятся на группы в зависимости от характера опасностей, конструктивного исполнения, области применения и т. д. В широком понимании к средствам безопасности следует относить все то, что способствует защищенности человека от опасности, а именно: воспитание, образование, укрепление здоровья, дисциплинированность, здравоохранение, государственные органы управления и т. п.
3. ОСНОВЫ УПРАВЛЕНИЯ БЕЗОПАСНОСТЬЮ ДЕЯТЕЛЬНОСТИ
Под управлением БЖД понимается организованное воздействие на систему «человек-среда» с целью достижения желаемых результатов. Управлять БЖД — это значит осознанно переводить объект из одного состояния (опасное) в другое (менее опасное). При этом объективно соблюдаются условия экономической и технической целесообразности, сравнение затрат и получение выгод. Требование системности заключается в учете необходимого и достаточного числа компонентов, которыми определяется безопасность. Важнейшие принципы системного анализа сводятся к следующему: процесс принятия решений должен начинаться с выявления и четкого формулирования конечных целей; всю проблему необходимо рассматривать как единое целое; необходим анализ альтернативных путей достижения целей; подцели не должны вступать в конфликт с общей целью.
При этом цель должна удовлетворять требованиям реальности, предметности, количественной определенности, адекватности, эффективности, контролируемости. Формирование целей — наиболее сложная задача в управлении безопасностью. Цель следует рассматривать как иерархическое понятие. Программа всегда направлена на достижение конкретной цели. Это главная цель. Она подразделяется на подцели, которые ранжируются по степени важности.
Стадии, на которых должны учитываться требования безопасности, образуют полный цикл деятельности, а именно: научный замысел; НИР; ОКР; проект; реализация проекта; испытания; производство; транспортирование; эксплуатация; модернизация и реконструкция, консервация и ликвидация; захоронение. Своевременный учет требований безопасности на каждой стадии обуславливается не только техническими, но и экономическими соображениями.
4. ФУНКЦИИ УПРАВЛЕНИЯ БЖД
Управление — это процесс, в котором можно в общем случае выделить несколько функций: 1) Анализ и оценка состояния объекта. 2) Прогнозирование и планирование мероприятий для достижения целей и задач управления. 3) Организация, т. е. непосредственное формирование управляемой и управляющей систем. 4) Контроль, т. е. система наблюдения и проверки за ходом организации управления. 5) Определение эффективности мероприятий. 6) Стимулирование, т. е. формы воздействия, побуждающие участников управления творчески решать проблемы управления.
Тема 4. ПСИХОЛОГИЯ БЕЗОПАСТНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ (АНТРОПОГЕННЫЕ ОПАСНОСТИ)
1. Предмет и задачи психологии безопасности как научной дисциплины
Психология — это наука о психическом отражении действительности в процессе деятельности человека. В психологии выделяется несколько отраслей, в том числе психология труда, инженерная психология, психология безопасности.
Психология труда изучает психологические аспекты трудовой деятельности. Она возникшая на рубеже ХГХ-ХХ вв.
Инженерная психология изучает процессы информационного взаимодействия человека с техническими системами, а также требования, предъявляемые к конструкции машин и приборов с учетом психических свойств человека. По целям и задачам близка к инженерной психологии эргономика, возникшая в середине XX в. Психология безопасности, зародилась в начале XX в. в рамках психологии труда. ЕЁ объектом как науки являются психологические аспекты деятельности; предметом – психические процессы, состояние и свойства человека, влияющие на условия безопасности. Психология безопасности изучает психологические, т. е. зависящие от человека, причины несчастных случаев и разрабатывает методы и средства защиты от них. Её можно рассматривать как основополагающий аспект антропогенных опасностей, затрагивающий проблему роли человека как основного участника несчастных случаев и аварий. Наибольший практический интерес представляет выяснение психологических причин несчастных случаев.
2. Психические процессы и состояния
Психические процессы составляют основу психической деятельности и являются динамическим отражением действительности. Без них невозможно формирование знаний и приобретение жизненного опыта. Различают познавательные, эмоциональные и волевые психические процессы (ощущения, восприятия, память и др.).
Психическое состояние человека — это относительно устойчивая структурная организация всех компонентов психики, выполняющая функцию активного взаимодействия человека (как обладателя психики) с внешней средой, представленной в данный момент конкретной ситуацией. Психические состояния отличаются разнообразием и временным характером, определяют особенности психической деятельности в конкретный момент и могут положительно или отрицательно сказываться на течении всех психических процессов.
В процессе деятельности реакция организма на внешние воздействия не остается постоянной. Организм стремится приспо-собиться к изменяющимся условиям деятельности, преодолеть трудности и опасности. При этом возникает состояние психи-ческой напряженности, которое канадский физиолог Г. Селье (1936) назвал стрессом. Как показали многочисленные исследо-вания, стресс в трудовой деятельности, в зависимости от его уровня, порождает весьма различные, а порой даже противоположные результаты. Стресс проявляется во всеобщем адаптационном синдроме как необходимая и полезная реакция организма на резкое увеличение его общей внешней нагрузки. Он состоит в целом ряде физиологических сдвигов в организме, способствующих повышению его энергетических возможностей и успешности выполнения сложных и опасных действий. Поэтому сам по себе стресс является не только целесообразной защитной реакцией человеческого организма, но и механизмом, содействующим успеху трудовой деятельности в условиях помех, трудностей и опасностей.
Однако между уровнем стресса и вытекающей из него активацией нервной системы, с одной стороны, и результативностью трудовой деятельности — с другой нет пропорциональной зависимости. Установлено, что с ростом активации нервной системы до определенного уровня продуктивность поведения повышается, тогда, как с дальнейшим ростом активации она начинает падать. Таким образом, стресс оказывает положительное влияние на результаты труда (мобилизует организм и способствует преодолению возникших в труде препятствий) лишь до тех пор, пока он не превысил определенного критического уровня. При превышении же этого уровня в организме развивается так называемый процесс гипермобилизации, который влечет за собой нарушение механизмов саморегуляции и ухудшение результатов деятельности, вплоть до ее срыва. Поэтому стресс, превышающий критический уровень, иногда называют дистрессом.
Итак, пока стресс, вызванный усложнением условий труда, не превышает определенного уровня, он способствует преодолению трудностей. Однако все это достигается за счет мобилизации ресурсов организма. И те виды трудовой деятельности, где необходимость в подобной мобилизации возникает довольно часто, отрицательно сказываются на здоровье занятых в них людей. Люди, которые вынуждены трудиться с максимальной физической и умственной нагрузкой, по наблюдению автора, выглядят как обессиленные. Нормальная загрузка рабочих и их необходимая готовность к труду обеспечивается при 40—60%, а в особых случаях кратковременно при 80% от максимальной нагрузки. Оставшиеся 20% рассматривают как ре-зерв, который допустимо использовать лишь в случаях крайней необходимости (при возникновении угрозы для жизни).
Выделяют шесть групп таких производственных стрессоров, отрицательно действующих на современном механизи-рованном и автоматизированном предприятии: интенсивность работы; давление фактора времени (штурмовщина, срочная, ак-кордная работа и т. п.); изолированность рабочих мест и недостаточные межличностные контакты между рабочими (операторы современного предприятия часто удалены один от другого, находятся в изолированных помещениях); однообразная и монотон-ная работа (на конвейере, у приборных пультов); недостаточная двигательная активность (многие часы оператор находится в состоянии готовности к действию, тогда как необходимость действия возникает редко); различные внешние воздействия (шумы,, вибрации, высокие температуры и т. п.).
Таким образом, гипермобилизация организма приводит к чрезмерным формам психического состояния, которые называются дистрессом или запредельными формами.
3. Особые психические состояния
Можно выделить два типа запредельного психического напряжения — тормозной и возбудимый.
Тормозной тип — характеризуется скованностью и замедленностью движений. Специалист не способен с прежней ловкостью производить профессиональные действия. Снижается скорость ответных реакций. Замедляется мыслительный процесс, ухудшается воспоминание, проявляется рассеянность и другие отрицательные признаки, не свойственные данному человеку в спокойном состоянии.
Возбудимый тип — проявляется гиперактивностью, многословностью, дрожанием рук и голоса. Операторы совершают многочисленные, не диктуемые конкретной потребностью действия. Они проверяют состояния приборов, поправляют одежду, растирают руки, в общении с окружающими они обнаруживают раздражительность, вспыльчивость, не свойственную им резкость, грубость, обидчивость.
Запредельные формы психического напряжения лежат нередко в основе ошибочных действий и неправильного поведения операторов в сложной обстановке. Длительные психические напряжения и особенно их запредельные формы ведут к выраженным состояниям утомления.
Умеренное напряжение — нормальное рабочее состояние, возникает под мобилизирующим влиянием трудовой дея-тельности. Это состояние психической активности — необходимое условие успешного выполнения действий. Оно сопровож-дается умеренным изменением физиологических реакций организма, проявляется в хорошем самочувствии, стабильном и уверенном выполнении действий. Умеренное напряжение соответствует работе в оптимальном режиме. Оптимальный режим работы осуществляется в комфортных условиях, при нормальной работе технических устройств. Обстановка является привычной, рабочие действия осуществляются в строго определенном порядке, мышление носит алгоритмический характер.
В оптимальных условиях промежуточные и конечные цели труда достигаются при невысоких нервно-психических зат-ратах. Обычно здесь имеют место длительное сохранение работоспособности, отсутствие грубых нарушений, ошибочных действий, отказов, срывов и других аномалий. Деятельность в оптимальном режиме характеризуется высокой надежностью и оптимальной эффективностью. Повышенное напряжение сопровождает деятельность, протекающую в экстремальных условиях, требующие от работающего максимального напряжения физиологических и психических функций, резко выходящего за пределы физиологической нормы. Экстремальный режим — это работы в условиях, выходящих за пределы оптимума. Отклонения от оптимальных условий деятельности требуют повышенного волевого усилия или, иначе говоря, вызывают напряжение.
Неблагоприятные факторы, повышающие напряжение, делятся на следующие группы:
1. физиологический дискомфорт, т. е. несоответствие условий обитания нормативным требованиям;
2. биологический страх;
3. дефицит времени на обслуживание;
4. повышенная трудность задачи;
5. повышенная значимость ошибочных действий;
6. наличие релевантных помех;
7. неуспех вследствие объективных обстоятельств;
8. дефицит информации для принятия;
9. недогрузка информацией (сенсорная депривация);
10. перегрузка информацией;
11. конфликтные условия, т. е. условия, при которых выполнение одного из них требует осуществления действий, противоречащих выполнению другого условия.
Напряжения могут быть классифицированы в соответствии с теми психическими функциями, которые преимущественно вовлечены в профессиональную деятельность и изменения которых наиболее выражены в неблагоприятных условиях.
Интеллектуальное напряжение — вызвано частым обращением к интеллектуальным процессам при формировании плана обслуживания, обусловленное высокой плотностью" потока проблемных ситуаций обслуживания.
Сенсорное напряжение — вызвано неоптимальными условиями деятельности сенсорных и перцептивных систем и возникающее в случае больших затруднений в восприятии необходимой информации.
Монотония — вызвана однообразием выполняемых действий, невозможностью переключения внимания, повышенными требованиями как к концентрации, так и к устойчивости внимания.
Политония — вызвана необходимостью переключений внимания, частых и в неожиданных направлениях.
Физическое напряжение — вызвано повышенной нагрузкой на двигательный аппарат человека.
Эмоциональное напряжение — вызванное конфликтными условиями, повышенной вероятностью возникновения аварийной ситуации, неожиданностью либо длительным напряжением прочих видов.
Напряжение ожидания — вызвано необходимостью поддержания готовности рабочих функции в условиях отсутствия деятельности.
Мотивационное напряжение связано с борьбой мотивов, с выбором критериев для принятия решения.
Утомление — напряжение, связанное с временным снижением работоспособности, вызванным длительной работой.
По времени действия психические состояния можно разделить на следующие группы: 1) Относительно устойчивые и длительные по времени состояния. Это состояния удовлетворенности или неудовлетворенности работой, заинтересованности трудом или безразличия к нему и т. п. 2) Временные, ситуативные, быстро проходящие состояния. Возникают под влиянием разного рода неполадок в производственном процессе или во взаимоотношениях работающих. 3) Состояния, возникающие периодически в ходе трудовой деятельности. Таких состояний много: предрасположение к работе, пониженная готовность к ней, вырабатывание, повышенная работоспособность, утомление, сонливость, апатия, повышенная активность и т. п.
Появления особых психических состояний, которые не являются постоянным свойством личности и возникают спонтанно или под влиянием внешних факторов, сильно изменяющих работоспособность человека. Это так называемые пароксизмальные расстройства сознания: психогенные изменения настроения, состояния, связанные с приемом психически активных средств (стимуляторов, транквилизаторов, алкогольных напитков), группа расстройств различного происхождения (органические заболевания головного мозга, эпилепсия, обмороки), характеризующихся кратковременной (от с до нескольких мин) утратой сознания.
Психогенные изменения и аффективные состояния возникают под влиянием психических воздействий. Снижение настроения и апатия могут длиться от нескольких часов до 1-2 месяцев. Снижение настроения наблюдается при гибели родных и близких людей, после конфликтных ситуаций. При этом появляется безразличие, вялость, общая скованность, заторможенность, затруднение переключения внимания, замедление темпа мышления. Снижение настроения сопровождается ухудшением самоконтроля и может быть причиной производственного травматизма. Практический опыт свидетельствует, что прием легких стимуляторов (чай, кофе) помогает в борьбе с сонливостью и может способствовать повышению работоспособности на короткий период. Употребление транквилизаторов — препаратов, смягчающих психоэмоциональные стрессовые состояния (эмоциотропные адаптогены — седуксен, элениум), представляет особую проблему. Оказывая выраженное успокоение и предупреждая развитие неврозов, эти препараты могут снизить психическую активность, замедлить реакции, вызывать апатию и сонливость.
К числу постоянных факторов, повышающих индивидуальную подверженность опасности и совершению ошибок, относится употребление спиртных напитков. Даже незначительное употребление алкоголя увеличивает вероятность несчастных случаев в силу того, что алкоголь влияет на деятельность нервной системы и на поведение человека: нарушается управление движениями; человек при этом реагирует на внешние воздействия с меньшей быстротой и точностью или же, наоборот, поспешно, колебания внимания становятся беспорядочными и менее управляемыми; нарушается также широта и критичность мышления, человек делает поспешные выводы или принимает необдуманные решения. Любая степень опьянения, даже незначительное употребление алкоголя повышает подверженность опасности. Регулярное употребление алкоголя снижает сопротивляемость организма, вследствие чего в нем могут возникать различные заболевания, в особенности инфекционные. На организм, пораженный алкоголем, сильнее действуют и промышленные яды, вызывающие некоторые профессиональные заболевания. Алкоголь и ядовитые вещества, попадая в организм, комплексно воздействуют на него, что во многих случаях вызывает тяжелое отравление.
С позиции безопасности труда особое значение имеет посталкогольная астения (похмелье). Развиваясь в дни после упот-ребления алкоголя, она не только снижает работоспособность человека, ведет к заторможенности и снижению осторожности.
Пароксизмальные перерывы в операторской деятельности могут быть причиной губительных последствий, особенно для водителей автотранспорта, верхолазов, монтажников, строителей, работающих на высоте. Современные средства психофизио-логических исследований позволяют выявлять лиц со скрытой наклонностью к пароксизмальным состояниям.
Под влиянием обиды, оскорбления, производственных неудач могут развиваться аффективные состояния (аффект — взрыв эмоций). В состоянии аффекта у человека развивается психогенное (эмоциональное) сужение объема сознания. При этом наблюдаются резкие движения, агрессивные и разрушительные действия. Лица, склонные к аффективным состояниям, относятся к категории повышенного риска травматизации и не должны допускаться к ответственным работам.
На ситуацию, воспринимаемую в качестве обидной, возможны следующие реакции:
Конфликт — реакция, возникающая, когда человеку приходится выбирать между двумя потребностями, которые действуют одновременно. Такая ситуация часто возникает в области безопасности, когда необходимо считаться либо с потребностями производства, либо со своей безопасностью.
Поведение срыва — при повторяющихся неудачах или при чрезвычайной ситуации человек может в некотором смысле отказаться от своих целей. Он доходит до отрицания некоторых внутренних и внешних потребностей. В этом случае у него также будут проявляться реакции, похожие на смирение, пассивность, апатию, а в некоторых случаях на срыв.
Тревога (тревожное ожидание) — эмоциональная реакция на опасность. Человек с трудом способен определить объект или причины своего состояния. Лицо, находящееся в состоянии беспокойства, гораздо больше предрасположено к совершению ошибки или опасного поступка.
Страх — эмоция, возникающая в ситуациях угрозы биологическому или социальному существованию индивида и направленная на источник действительной или воображаемой опасности. Функционально страх служит предупреждением о предстоящей опасности, побуждает искать пути ее избегания. Страх варьирует в достаточно широком диапазоне оттенков (опасения, боязнь, испуг, ужас).
Испуг — безусловно-рефлекторный “внезапный страх”. Боязнь, напротив, всегда связана с осознанием опасности, возникает медленнее и дольше продолжается. Ужас — наиболее сильная степень эффекта страха и подавления страхом рассудка.
Осознание опасности может вызвать различные формы эмоциональных решений. Первая их форма — реакция страха — проявляется в оцепенении, дрожи, нецелесообразных поступках. Развивается по механизму пассивно-оборонительного рефлекса. Эта форма реакции на опасность отрицательно отражается на деятельности. Нередко выраженный страх может тонизировать кору головного мозга и в сочетании с процессами мышления проявляется как “разумный страх” в виде опасения, осторожности, осмотрительности.
Паника — одна из форм страха. Биологическим механизмом ее является активно-оборонительный вид рефлекса; она также отрицательно сказывается на деятельности человека, В этом случае страх достигает силы аффекта и способен навязывать стереотипы поведения (бегство, оцепенение, защитная агрессия). Рассматривая влияние панического состояния на движения человека, следует выделить следующие наиболее возможные ошибки:
1) Действие не совершается, то есть паническое состояние приводит к полной закостенелости поступков. В обиходе о подобных случаях говорят: “он оцепенел”, “остолбенел” от ужаса (от неожиданности). 2) В автоматически выполняемой последовательности поступков возникает пробел, а человек совершает движения, лишние в данной ситуации. 3) Реакция на панику выражается в виде инстинктивных защитных движений, которые, однако, не соответствуют объективным требованиям защиты. 4) Человек продолжает выполнять автоматические действия без каких-либо изменений, вместо того, чтобы прекратить или изменить их.
Состояние паники — это тот самый передаточный механизм, через который субъективные индивидуальные факторы оказывают свое воздействие на создание или развитие опасной ситуации.
Перечисленные выше факторы постоянно или временно повышают возможности появления опасной ситуации или несчастных случаев, но это, однако, не означает, что их воздействие всегда ведет к созданию опасной ситуации или к несчастному случаю. Иначе говоря, их не следует однозначно рассматривать в качестве причин, непосредственно вызывающих опасность.
Поведение больших масс людей, особенно в условиях паники, имеет свои законы и отличается от поведения одного чело-века. Основными механизмами формирования толпы и развития ее специфических качеств является циркуляционная реакция — нарастающее обоюдо-направленное эмоциональное заражение, а также слухи.
Отсутствие ясных целей и структуры порождают практически наиболее важное свойство толпы — ее легкую превраща-емость из одного вида поведения в другой (любопытство, экспрессия, агрессивные действия и др.). Такие превращения проис-ходят спонтанно и в условиях чрезвычайных ситуаций (пожар, кораблекрушение и пр.), весьма опасна толпа, зараженная мас-совой паникой и трудно поддающаяся управлению.
Массовая паника — один из видов поведения толпы. Психологически характеризуется состоянием массового страха перед реальной или воображаемой опасностью, нарастающего в процессе взаимного заражения и блокирующего способность рацио-нальной оценки обстановки, мобилизацию волевых ресурсов и организацию совместного противодействия. Взаимодействующая группа людей тем легче вырождается в паническую толпу, чем менее ясны или субъективно значимы общие цели, чем ниже сплоченность группы и авторитет ее лидеров.
Выделяются социально-ситуативные условия возникновения массовой паники, связанные с общей обстановкой психиче-ской напряженности, вызывающей состояние тревоги, ожидание тяжелых событий (наводнение, землетрясение, засуха и пр.), общепсихологические условия (неожиданность, испуг, связанный с недостатком сведений о конкретном источнике опасности, времени ее возникновения и способах противодействия), физиологические условия (усталость, голод, опьянение).
Законы групповой психологии необходимо учитывать при анализе опасных ситуаций. Психологическая наука дает некоторые рекомендации по коррекции поведенческих реакций человека и действиям в чрезвычайных ситуациях.
4. Мотивация деятельности
Мотивация или побуждение — это такие функциональные состояния организма, при которых человек стремится совершать действия, направленные на достижение определенных потребностей и результатов.
В деятельности человека проявляются 5 основных мотивов: выгода, безопасность, удобство, удовлетворенность, нивели-рование (быть не хуже других). Указанные мотивы нередко вступают в противоречие между собой. Поэтому важно знать за-кономерности, которым подчиняется мотивация деятельности. Исследования показали, что при выполнении простейших заданий, где вероятность успеха была близка к единице, мотивация была близка к нулю. Мотивация падала до нуля и при выполнении особо трудных заданий, где вероятность достижения цели была очень мала и надежд на успех почти не было. Наибольшая сила мотива возникала к выполнению действий средней трудности, где имелось достаточно надежд на успех, но где присутствовали и трудности, делающие такой успех привлекательным.
Показано, что характер связи между трудностью действия и силой мотива к его выполнению зависит от свойств нервной системы. Так, испытуемые, отличающиеся более слабой нервной системой, как правило, были сильнее мотивированы на выполнение более простых действий, чем остальные. У таких людей максимум мотивации проявлялся в задачах, где имелось больше надежды на успех. Испытуемые же, отличающиеся более сильной нервной системой, напротив, были склонны стремиться к выполнению действий такой степени трудности, которая превышала среднюю.
В исследованиях обнаружена любопытная связь: испытуемые более слабого типа, наряду с более простыми задачами, нередко предпочитали и задачи очень высокой сложности. Такой, казалось бы, неожиданный факт объясняется следующим образом. Люди подобной категории весьма чувствительны к оценке их личностных качеств в общественном мнении, к угрозе их репутации. Если выбирается очень сложная задача и не удается ее решить, то такая неудача их репутации не грозит. Нерешение задачи средней сложности, а тем более простой уже может служить свидетельством недостатка их индивидуальных качеств. Боязнь проявления такой несостоятельности толкает иногда данную категорию людей на выбор задач особо высокой сложности.
5. Методы повышения безопасности
В действиях человека психологи выделяют три функциональные части: мотивационную, ориентировочную и исполнительную. Нарушение в любой из этих частей влечет за собой нарушение действий в целом.
Человек нарушает требования безопасности по следующим причинам: по незнанию этих требований; по нежеланию выполнять известные ему требования безопасности; в связи с неумением выполнить требования; в связи с невозможностью выполнить требования (по причинам, не зависящим от человека).
В психологической классификации причин возникновения опасных ситуаций и несчастных случаев выделяют 3 класса.
Нарушение мотивационной части действий. Проявляется в нежелании выполнять определенные действия (операции). Нарушение может быть относительно постоянным (человек недооценивает опасность, склонен к риску, отрицательно относится к трудовым и (или) техническим регламентациям, безопасный труд не стимулируется и т. п.) и временным (человек в состоянии депрессии, алкогольного опьянения).
Нарушение ориентировочной части действий. Проявляется в незнании правил эксплуатации технических систем и норм по безопасности труда и способов их выполнения.
Нарушение исполнительной части. Проявляется в невыполнении правил (инструкций, предписаний, норм и т. д.) вследствие несоответствия психических и физических возможностей человека требованиям работы. Такое несоответствие, как и в случае с нарушением мотивационной части действий, может быть постоянным (недостаточная координация, плохая концентрация внимания, несоответствие роста габаритам обслуживаемого оборудования и т. д.) и временным (переутомление, понижение трудоспособности, ухудшение состояния здоровья, стресс, алкогольное опьянение).
Эта классификация предоставляет реальную возможность в соответствии с каждой группой причин возникновения опасных ситуаций и несчастных случаев назначить группу профилактических мероприятий в каждой части: мотивационная часть — пропаганда и воспитание; ориентировочная — обучение, отработка навыков; исполнительная — профотбор, медицинское обследование.
Тема 5. СОЦИАЛЬНЫЕ ОПАСНОСТИ
Классификация социальных опасностей
Социум — это особая система, некоторый организм, развивающийся по своим специфическим законам, характеризующимся чрезвычайной сложностью. В социуме взаимодействует огромное количество людей. Результатом этих связей является особая обстановка, создающаяся в отдельных социальных группах, которая может влиять на других людей, не входящих в данные группы. Социальными называются опасности, получившие широкое распространение в обществе и угрожающие жизни и здоровью людей. Носителями социальных опасностей являются люди, образующие определенные социальные группы. Распространение социальных опасностей обусловлено поведенческими особенностями людей отдельных социальных групп. Социальные опасности весьма многочисленны и угрожают большому числу людей. К ним, например, относятся все незаконные формы насилия, употребление веществ, нарушающих психическое и физиологическое равновесие человека (алкоголь, наркотики), курение, суициды, мошенничество, шарлатанство, способные нанести ущерб здоровью людей. Социальные опасности могут быть классифицированы по определенным признакам.
1. По природе:
• связанные с психическим воздействием на человека (шантаж, мошенничество, воровство и др.);
• связанные с физическим насилием (разбой, бандитизм, террор, изнасилование, заложничество);
• связанные с употреблением веществ, разрушающих организм человека (наркомания, алкоголизм, курение);
• связанные с болезнями (СПИД, венерические заболевания и др.); д) опасности суицидов.
2. По масштабам событий: а) локальные; б) региональные; в) глобальные
3. По половозрастному признаку: опасности, характерные для детей, молодежи, женщин, пожилых людей.
4. По организации социальные опасности могут быть случайными и преднамеренными.
2. ПРИЧИНЫ СОЦИАЛЬНЫХ ОПАСНОСТЕЙ
В основе своей социальные опасности порождаются социально-экономическими процессами, протекающи-ми в обществе. В то же время следует отметить противоречивый характер причин, следствием которых являют-ся социальные опасности. Несовершенство человеческой природы — главная предпосылка появления социаль-ных опасностей. Наличие адекватной правовой системы может явиться основным условием предупреждения и защиты от социальных опасностей. Распространению социальных опасностей способствует интенсивное разви-тие международных связей, туризма, спорта.
3. ВИДЫ СОЦИАЛЬНЫХ ОПАСНОСТЕЙ
Рассмотрим некоторые виды социальных опасностей.
Шантаж – преступление, заключающееся в угрозе разоблачения, разглашения позорящих сведений с целью добиться каких-либо выгод; как опасность оказывает отрицательное воздействие на нервную систему.
Мошенничество — преступление, заключающееся в завладении государственным, общественным или личным имуществом (или в приобретении прав на имущество) путем обмана или злоупотребления доверием.
Бандитизм — это организация вооруженных банд с целью нападения на государственные и общественные учреждения либо на отдельных лиц, а также участие в таких бандах и совершенных ими нападениях.
Разбой — преступление, заключающееся в нападении с целью завладения государственным, общественным или личным имуществом, соединенном с насилием или угрозой насилия, опасном для жизни и здоровья лица, подвергшегося нападению.
Изнасилование — половое сношение с применением физического насилия, угроз или с использованием беспомощного состояния потерпевшей. Уголовное право предусматривает суровое наказание за изнасилование, вплоть до смертной казни (при отягчающих обстоятельствах).
Заложничество —преступления, суть которого состоит в захвате людей (нередко это дети и женщины) одними лицами с целью заставить выполнить определенные требования другими лицами, из числа которых взяты заложники.
Террор — физическое насилие вплоть до физического уничтожения.
Наркомания (от греческого narke — оцепенение и mania — безумие, восторженность) — зависимость человека от приема наркотиков, заболевание, которое выражается в том, что жизнедеятельность организма поддерживается на определенном уровне только при условии приема наркотического вещества и ведет к глубокому насыщению физических и психических функций. Резкое прекращение приема наркотика вызывает нарушение многих функций организма — абстиненцию.
Различают пристрастие к какому-либо одному веществу — мононаркоманию (морфинизм, героинизм, кодеи-низм, гашишизм, кокаинизм и др.) и к их сочетанию — полинаркоманию (опийно-алкогольная, опийно-барбиту-ровая и др.). Возникновение наркомании связано с эйфоризирующим, приятно оглушающим или стимулирующим эффектом. Чем сильнее выражен этот эффект, тем быстрее наступает привыкание. Развитие наркомании может наступить как результат любопытства, экспериментирования, как следствие приема обезбо-ливающих, снотворных средств, её аспространению способствует нездоровая микросоциальная среда, отсутст-вие у человека интеллектуальных и социально-положительных установок.
Алкоголизм — хроническое заболевание, обусловленное систематическим употреблением спиртных напитков. Проявляется физическая и психическая зависимость от алкоголя, психическая и социальная деградация, патология внутренних органов, обмена веществ, центральной и периферической нервной системы. Нередко возникают алкогольные психозы. Алкоголь оказывает сильное влияние на нервную систему, психофизиологические процессы даже в том случае, если внешне поведение человека не отличается от нормального.
Алкоголь быстро всасывается в кровь. Примерно через 5 мин. он достигает головного мозга. Проникая внутрь живых клеток, алкоголь замедляет, ослабляет и даже останавливает их деятельность, нарушает работу органов и тканей. Особенно пагубно он действует на нервные клетки. Он имеет все признаки наркотического вещества. Особенно опасен алкоголь для людей, выполняющих работы, требующие сосредоточенности. Под влиянием алкоголя период высокой работоспособности сокращается в 2-3 раза, соответственно удлиняется период утомления. Очень сильное влияние оказывает опьянение на снижение скорости двигательной реакции. Содержание в крови более 0,05% алкоголя отрицательно сказывается на психофизиологическом состоянии человека. Опьянение снижает сопротивляемость организма действию опасных и вредных производственных факторов. Доказано, что даже в трезвом состоянии человек, злоупотребляющий алкоголем, больше подвержен опасностям, чем непьющий.
Курение — вдыхание дыма некоторых тлеющих растительных продуктов (табак и др.). Это — одна из наиболее распространенных вредных привычек, появившаяся в Европе в XVI веке, в России в XVII веке. По существу, людей можно разделить на две группы: курящих и некурящих. Рассмотрим действие на организм лишь некоторых веществ (табл. 7).
Оксид углерода СО взаимодействует с гемоглобином крови, который связывает этот газ в 200 раз прочнее, чем кислород. Поэтому ткани тела получают значительно меньше кислорода. У того, кто выкуривает пачку сигарет в день, 6% гемоглобина связывается СО в карбоксигемоглобин. Прибавьте к этому оксид углерода, содержащийся в загрязненном воздухе (особенно крупных городов), и количество карбоксигемоглобина возрастает до 10%, что серьезно увеличивает опасность смертельных сердечных приступов. Наличие в пище курильщика нитритов (даже в допустимых дозах) еще более снижает содержание кислорода, превращая гемоглобин в метгемоглобин, неспособный транспортировать кислород.
Никель, мышьяк, кадмий, свинец также попадают в легкие с дымом сигарет. Мышьяк и свинец некоторое время использовались как пестициды при выращивании табака. Табак с таких плантаций содержит эти элементы, накопленные ранее в почвах. Содержание свинца в сигарете составляет около 13 мкг. Выкуривая двадцать сигарет в день, человек вдыхает около 300 мкг свинца. Кроме того, свинец может содержаться в пище, воде и воздухе (тетраэтилсвинец — присадка к бензину). И свинец, и мышьяк, всасываясь в кровь, могут накапливаться и постепенно отравлять организм. В пачке сигарет содержится 30-40 мкг кадмия и 85-150 мкг никеля. Кадмий нарушает использование организмом кальция (болезни суставов), способствует повышению давления и вызывает болезни сердца. Исследования Государственной компании страхования США (1979) в группах людей разного возраста показали, что смертность среди курильщиков вдвое выше, чем среди некурящих того же возраста. Особенно часто подстерегают курильщиков скоропостижные смерти от сердечных приступов и кровоизлияний в мозг. Нередки у них и желудочно-кишечные язвы. Большой вред наносит курение беременным женщинам — у них рождаются мелкие дети, больше выкидышей и случаев мертворождения. Все это обусловлено недостатком кислорода в крови, кормящей матери.
В первую очередь курение затрагивает легкие: это одна из главных причин эмфиземы и рака легких (85% случаев). Курильщики часто болеют и раком гортани, пищевода, ротовой полости, мочевого пузыря, почек, поджелудочной железы. В последние годы женщины чаще погибали от рака легких, чем от рака молочной железы. При «пассивном курении» (пребывании в сильно накуренном помещении) некурящие люди за 1 час вдыхают столько никотина и оксида углерода, сколько они могли бы получить, если бы они сами выкурили одну сигарету. Оказалось также, что жены курящих
мужчин чаще болеют раком легких, чем жены некурящих. Такой же опасности подвергаются дети.
Венерические болезни. Этот термин был предложен в 1527 г. французским ученым Ж. де Бетаикуром. Венерические болезни были известны с глубокой древности (2500 лет до н. э.), однако их рассматривали как одно заболевание. В конце XV века из общей медицины выделилась самостоятельная дисциплина — венерология, изучающая инфекционные болезни, передающиеся в основном половым путем. Социальная опасность венерических болезней определяется их широким распространением, тяжелыми последствиями для здоровья самих заболевших и опасностью для общества. Венерические болезни при неправильном лечении принимают длительное течение, приводящее иногда к инвалидности. Гонорея может служить причиной многих женских болезней, мужского и женского бесплодия. Сифилис передается потомству, вызывая врожденные уродства, слепоту, глухоту. Сифилис может распространяться и бытовым путем.
Для устройства борьбы с венерическими болезнями необходим точный учет заболевших. Современные средства и методы позволяют полностью излечивать венерические болезни при своевременном обращении за врачебной помощью и аккуратностью лечения. В СССР были разработаны единые формы и методы борьбы с венерическими болезнями, основные положения которых заключаются в обязательном учете больных, выявлении источников заражения и обследовании лиц, имевших контакт с заболевшим. Проводились периодически профилактические осмотры работников пищевых предприятий, бань, детских учреждений, осуществлялось обязательное и бесплатное лечение венерических болезней, санитарное просвещение. По Уголовному кодексу РФ (ст. 121) установлена ответственность за заражение другого лица венерической болезнью лицом, знавшим о наличии у него этой болезни (наказывается лишением свободы на срок до 2 лет).
СПИД — первое сообщение об этой новой, прежде неведомой болезни появилось в американском «Еженедельном вестнике заболеваемости и смерти» в 1982 году. А теперь уже зараженные, больные и умершие от СПИДа есть во многих странах. Число заразившихся СПИДом удваивается каждый год. Главная вина в распространении эпидемии возлагается на промискуитет — беспорядочные половые связи. Пока нет никаких оснований надеяться на прививки. Многие специалисты считают, что лечить СПИД мы не сможем. Вирус СПИДа наиболее успешно распространяется там, где царит нужда, разврат, проституция, парамедицина. Самый эффективный путь борьбы со СПИДом, если не единственный, — это обучение, информация.
Суицид. История человечества свидетельствует о том, что насилие, агрессивность, жестокость распространены среди людей так же, как любовь, доброта, милосердие. Особая жестокость — это агрессия, направленная на себя (аутоагрессия). Она проявляется в актах самоунижения, самообвинения, в нанесении себе телесных повреждений и в самоубийстве — суициде. Особенность самоубийства в том, что смерть является делом рук самого потерпевшего и всегда представляет насильственный акт. Следует, однако, четко признать, что всегда есть обстоятельства, которые доводят человека до самоубийства. Поэтому слово «самоубийство» носит условное значение. Существует убеждение, что кончают с собой психически больные люди. На самом деле они составляют лишь 25-27%, еще 19% — это алкоголики. Большая же часть самоубийц — это здоровые люди. Специалисты убеждены, что суициды — это результат влияния социальной среды, подрывающей веру человека. Намерение лишить себя жизни появляется у человека в условиях, когда он оценивает ситуацию как неразрешимый конфликт.
Причин самоубийств много. Это — болезнь, предательство, тяжелые условия жизни, проблема отцов и детей, любовные отношения, религиозное влияние и т. п. Покушений на самоубийство больше у женщин (в 8-10 раз), завершенных суицидов — у мужчин (в 4 раза). Сейчас наблюдается рост самоубийств среди детей и подростков.
Профилактика суицидов заключается в психологических, педагогических и социальных мероприятиях, направленных на восстановление утраченного психологического и физиологического равновесия человека. Защита от социальных опасностей заключается в профилактических мероприятиях, направленных на ликвидацию этих опасностей. Кроме того, требуется соответствующая подготовка человека, позволяющая адекватно действовать в опасных ситуациях. Нужна юридическая, психологическая, информационная и силовая подготовка. В процессе обучения необходимо осваивать модели поведения, учитывающие конкретные ситуации.
Тема. ЭКОЛОГИЧЕСКИЕ ОПАСНОСТИ
1. Экологические системы и их состояния
В начале 60-х гг. нашего столетия человечество впервые стало осознавать серьезность встающих перед ним экологических проблем. Реальностью стали глобальное потепление климата, возникновение озоновых дыр над полюсами, распространение токсикантов и загрязнение воды, воздуха, почв, продуктов питания вредными химическими веществами, вымирание многих видов растений и животных, снижение биоразнообразия в результате деятельности растущего народонаселения планеты.
Сегодня скорость увеличения вредного воздействия средовых факторов и интенсивность их влияния уже выходит за пределы биологической приспособляемости экосистем к изменениям среды обитания и создает прямую угрозу жизни и здоровью населения. В современных условиях нестабильной социально-экономической обстановки эти негативные тенденции особо проявляются и в нашей стране.
Принципиальный недостаток развиваемых до последнего времени технологий заключается в том, что они приводят к нарушению круговорота веществ в биосфере, при которой природные ресурсы превращаются в загрязнение окружающей среды. Если очистительная способность окружающей природной среды недостаточна для нейтрализации загрязнений, то они неблагоприятно действуют на здоровье людей, технологические процессы в производстве и на возобновляемые природные ресурсы (рис. 43).
При этом невозобновляемые ресурсы растрачиваются нерационально и в конечном итоге истощаются. Используя показатели темпов самовосстановления природных систем (если самовосстановление возможно) и качественно-количественного состояния биомассы и биологической продуктивности экосистем, можно выделить следующие градации:
1. естественное состояние — наблюдается лишь фоновое антропогенное воздействие, биомасса максимальна, биологическая продуктивность минимальна;
2. равновесное состояние — скорость восстановительных процессов выше или равна темпу нарушений, биологическая продуктивность больше естественной, биомасса начинает снижаться;
3. кризисное состояние — антропогенные нарушения превышают по скорости естественно-восстановительные процессы, но сохраняется естественный характер экосистем, биомасса снижена, биологическая продуктивность резко повышена;
4. критическое состояние — обратимая замена прежде ^Ществовавших экологических систем под антропогенным воздействием на менее продуктивные (частичное опустынивание), биомасса мала и как правило снижается;
5. катастрофическое состояние — труднообратимый процесс закрепления малопродуктивных экосистем (сильное опустынивание), биомасса и биологическая продуктивность минимальны;
6. состояние коллапса — необратимая утеря биологической продуктивности, биомасса стремится к нулю.
Помимо природно-экологической классификации угасания природы рассмотрим медико-социальную шкалу, так как мы должны учитывать не только изменения в биосфере, но и как эти изменения могут влиять на здоровье человека. Существуют следующие четыре градации, учитывающие только что изложенную классификацию состояний природы.
• Благополучная ситуация — происходит устойчивый рост продолжительности жизни, заболеваемость снижается.
• Зона напряженной экологической ситуации (экологически проблемная зона): ареал, в пределах которого наблюдается переход состояния природы от кризисного к критическому, и территория, где отдельные показатели здоровья населения (заболеваемость детей, взрослых, чисто психологических отклонений и т. п.) достоверно выше нормы, существующей аналогичных местах страны, не подвергающй выраженному антропогенному воздействию данного типа, но это не приводит к заметным и статистич- ки достоверным изменениям продолжительности жизни населения и более ранней инвалидности людей, профессионально не связанных с источником воздействия. Учитывать необходимо различные группы населения — коренного, мигрантов и т. п.
• Зона экологического бедствия: ареал, в пределах которого наблюдается переход от критического состояния природы к катастрофическому, и территория, в пределах которой в результате антропогенного (реже природного) воздействия невозможно социально-экономически оправданное (традиционное или научно рекомендованное) хозяйство; показатели здоровья населения (детская смертность, заболеваемость детей и взрослых, психические отклонения и т. п.), частота и скорость наступления инвалидности достоверно выше, а продолжительность жизни людей заметно и статистически достоверно ниже, чем на аналогичных территориях, не подвергшихся подобным воздействиям или бывших в том же ареале до констатации рассматриваемых воздействий. Сопряженные изменения в показателях здоровья и смертности населения должны быть выше, чем естественно наблюдаемые колебания в пределах существующей в данном или аналогичном регионе нормы (сейчас или в прошлом).
• Зона экологической катастрофы: переход состояния природы от катастрофической фазы к коллапсу, что делает территорию непригодной для жизни человека (например, некоторые районы Приаралья и Сахеля);
• возникший в результате природных или антропоген-ных явлений ареал, смертельно опасный для постоянной жизни людей (они могут там находиться лишь короткое время), например зона Чернобыльской катастрофы; ареал разрушительной природной катастрофы, например, мощного землетрясения, цунами и т. п. Еще раз необходимо напомнить о возможности и предпочтительности расчетных показателей. Целесообразно выделение зон потенциально напряженной экологической ситуации, экологического бедствия и такой же катастрофы.На основании приведенных критериев оценивается экологическое положение различных территорий и его
2. ИСТОЧНИКИ ЭКОЛОГИЧЕСКИХ ОПАСНОСТЕЙ
Люди, стремясь к максимальному удовлетворению своих потребностей, создают новые вещества, производят огромное количество материалов, технических устройств, предметов бытового назначения. Как правило, эти искусственные предметы, химические вещества, различные отходы обладают особыми свойствами, несовместимыми с экологическими системами и характеристиками самого человека. Они имеют конечный срок полезного использования, не разлагаются или разлагаются очень медленно, загрязняют атмосферу, гидросферу, почву, непосредственно или косвенно оказывают отрицательное влияние на людей.
В настоящее время науке известны более 10 млн. органических соединений. Около 100 000 из них используются довольно широко, и более тысячи добавляется к их списку каждый год. На долю 1500 из них приходится 95% мирового производства. Некоторые из них известны как опасные токсиканты, мутагены, онко-гены и тератогены. При накладке действие их, как правило, не суммируется, а усиливается. Загрязнение распространяется на многие биологические виды и места обитания, так что становится невозможно проследить многочисленные экологические последствия их использования. Чтобы оценить даже простейшие экологические эффекты, острую токсичность и биоконцентрирование каждого из этих веществ, требуется более 10 тыс. долларов, а стоимость всестороннего исследования увеличивается в десятки и сотни раз.
Вещества и предметы искусственного происхождения, которые вредят естественной среде обитания и человеку, называют ксенобиотиками, т. е. чуждыми жизни (от греч. «xenos» — чужой и «bios» — жизнь).
Долговременная экологическая опасность ксенобиотиков заключается в том, что они из рассеянного состояния концентрируются в биомассе, включая ту, котора служит пищей человеку. Различаются два механизм концентрирования. Первый основан на том, что организмы избирательно поглощают вещества из окружающей их среды, например растения из воздуха и почвенного раствора. Второй механизм основан на концентрировании веществ по пищевым цепям. Наибольшей опасности подвергаются те популяции, которые «замыкают» пищевую цепь (находятся на верщине экологической пирамиды), так как во многих случаях концентрация ксенобиотика (в расчете на биомассу) увеличивается на порядок с продвижением на одно звено. Концентрирование ксенобио-тиков приводит к вымиранию некоторых популяций, упрощению биоценозов с потерей их устойчивости, а в некоторых случаях представляет прямую опасность для человека. Приходится увеличивать коэффициент безопасности в 104 по отношению к нормам, установленным на основе представления о пассивном разбавлении ксенобиотиков.
3. ТЯЖЕЛЫЕ МЕТАЛЛЫ
Среди химических веществ, загрязняющих внешнюю среду (воздух, воду, почву), тяжелые металлы и их соединения образуют значительную группу веществ, оказывающих существенное неблагоприятное воздействие на человека. Высокая токсичность и опасность для здоровья человека тяжелых металлов, возможность их рассеивания в окружающей среде диктуют необходимость контроля и разработки мер защиты от них.
Опасность тяжелых металлов обусловлена их устойчивостью во внешней среде, растворимостью в воде, сорбцией почвой, растениями, что в совокупности приводит к накоплению тяжелых металлов в среде обитания человека. Тяжелые металлы являются факторами риска сердечно-сосудистых заболеваний наряду с общепризнанными, традиционными факторами (избыточной массой тела, гиподинамией, нервно-эмоциональными нагрузками, курением, злоупотреблением алкоголем и др.).
К тяжелым металлам относят более 40 химических элементов и среди них наиболее опасными являются — ртуть, свинец, кадмий, кобальт, никель, цинк, олово, сурьма, медь, молибден, ванадий, мышьяк. Их поступление в биосферу вследствие техногенного рассеяния осуществляется разнообразными путями: выброс при высокотемпературных процессах (черная и цветная металлургия, обжиг цементного сырья, сжигание минерального топлива), орошение водами с повышенным содержанием тяжелых металлов, внесение осадков бытовых сточных вод в почвы в качестве удобрения, вторичное загрязнение вследствие выноса тяжелых металлов из отвалов рудников или металлургических предприятий водными или воздушными потоками, поступление больших количеств тяжелых металлов при постоянном внесении высоких доз органических, минеральных удобрений и пестицидов, содержащих тяжелые металлы.
Рассеивание металлов может происходить на сотни и тысячи километров, приобретая межконтинентальные масштабы. В глобальных масштабах происходит процесс, называемый сегодня «металлическим прессом на биосферу». Ведущая роль в переносе металлов-загрязнителей принадлежит циркуляционным процессам, которые, в свою очередь, определяют особенности их пространственного распределения.
Техногенные загрязнения включают в кругооборот значительно большие количества тяжелых металлов по Равнению с их природными величинами, усугубляют опасность воздействия на человека уже не биотических, а токсических концентраций указанных элементов через почву, воду, воздух, растительные и животные оргазмы.
4. ПЕСТИЦИДЫ
Пестициды – ядохимикаты, химические препараты для защиты сельскохозяйственных растений от вредителей, болезней и сорняков, уничтожения паразитов сельскохо-зяйственных животных, вредных грызунов и др; средства, привлекающие или отпугивающие насекомых, регулирующие рост и развитие растений, применяемые для удаления листьев, цветов, завязей и др.
Дефолианты – химические вещества (бутифос, бутилкаптакс, тидрел, пуривел, хлорад магния, диоксин и др.), предназначенные для провоцирования искусственного опада-ния листвы растений (например, для облегчения механизированной уборки хлопка); представляют серьезную опасность для человека и животных.
Зооциды – химические вещества, предназначенные для уничтожения вредных, преимущественно позвоночных, животных-грызунов (родентициды), в частности мышей и крыс (ратициды), а также птиц (авициды), сорной рыбы (ихтиоциды) и др.
Арборициды – химические вещества, предназначенные для уничтожения нежелательной древесной или кустарной растительности.
Акарициды – химические вещества, предназначенные для уничтожения вредных клещей. Различают 2 группы акарицидов: 1) специфического действия, уничтожают только клещей и безвредны для других членистоногих (неорон, кельтан, тедион, эфирсуль); 2) неспецифические — уничтожают не только клещей, но и насекомых (инсектоакарициды).
Инсектициды – пестициды, предназначенные для борьбы с нежелательными (с точки зрения человека) в хозяйствах и природных сообществах насекомыми.
Фунгициды – химические вещества, предназначенные для борьбы с грибами — возбудителями болезней, разрушающих древесные конструкции и повреждающих хранящиеся материальные ценности.
Детергенты – химические соединения, понижающие поверхностное натяжение воды и используемые в качестве моющего средства или эмульгатора. Детергенты — широко распространенные и опасные для человека, животных и растений химические загрязнители воды, водоемов, почв.
Пестициды применяются в различных формах: растворы, суспензии, аэрозоли, пены, газы, пары,-пыль, порошки, пасты, гранулы, капсулы. С воздушными массами они могут переноситься на большие расстояния и вызывать загрязнение окружающей среды там, где пестициды вообще не применялись или использовались в меньших количествах. Все пестициды являются ядовитыми веществами не только для определенной формы жизни, но и для полезных насекомых и микроорганизмов, животных, птиц и человека. В идеальном случае пестицид, оказав требуемое воздействие на вредителя, должен был сразу разрушиться, образовав безвредные продукты разложения. Однако большинство пестицидов представляют собой устойчивые трудноразлагаемые соединения, у которых непосредственно используется 4-5% внесенного количества, а остальная масса рассеивается в агроэкосистеме, попадая в почвы, растения и другие компоненты окружающей среды, что создает сложные экологические проблемы. При внесении в почву пестициды подвергаются многочисленным влияниям биотического и небиотического характера. Под устойчивостью пестицида понимают его способность определенное время сохраняться в почвах, измеряемую периодом полураспада, то есть временем, необходимым для разрушения 50% внесенного в почву пестицида. Характер и скорость процессов разложения зависят от химической природы препарата, а также от водно-физических характеристик и химического состояния почвы.
5. ДИОКСИНЫ
В большую группу диоксинов и диоксиноподобных соединений входят как сами полихлорированные дибен-зордиоксины (ПХДД) и дибензофураны (ПХДФ), которые по своей химической структуре являются три-циклическими ароматическими соединениями, так и полихлорированные бифенилы (ПХБ), поливинилхлорид (ПВХ) и ряд других веществ, содержащих в своей молекуле атомы хлора. Это чужеродные живым организмам соединения, попадающие в окружающую среду с продукцией или отходами многих технологий. Диоксины найдены везде — в воздухе, почве, донных отложениях, рыбе, молоке (в том числе и грудном), овощах и т. д. Обладают чрезвычайно высокой устойчивостью к химическому и биологическому разложению, способны сохраняться в окружающей среде в течение десятков лет переносится по пищевым цепям; супертоксиканты – универсальными клеточными ядами, поражающими все живое. Диоксины не производятся промышленно, но они возникают при производстве других химических веществ в виде примесей, например: при синтезе гексахлор-фенола, хлорированных фенолов, гербицидов на основе гек-сахлорбензола и хлордифениловых эфиров. Известна трагедия вблизи г. Севезо (Италия), где на заводе произошел выброс трихлорфенола, содержащего примерно 2-3 кг ТХДД. Более 2/3 этого количества отложилось на площади в 15 га на расстоянии около 500 м от завода. Период полураспада ТХДД в почве составляет примерно 10-12 лет. Источником поступления диоксинов в окружающую среду является и нарушение правил захоронения промышленных отходов, в результате чего также происходит сильное загрязнение почв.
К другим источникам диоксинов относятся: термическое разложение технических продуктов, сжигание осадков сточных вод, муниципальных, медицинских и опасных отходов (например, ПХБ и изделий из ПВХ);
металлургическая и металлообрабатывающая промышленность, выхлопные газы автомобилей, целлюлозно-бумажная промышленность, лесные пожары (леса, обработанные хлорфенольными пестицидами), хлорирование питьевой воды и др. Известное еще с начала XX в. заболевание, называемое хлоракне, было квалифицировано в 30-е гг. как профессиональная болезнь рабочих хлорных производств. Хлоракне — тяжелая форма угрей, уродующих кожу лица. Заболевание может длиться годами и практически не поддается лечению. Пик выброса диоксинов пришелся на 60-70-е гг. XX в., в результате расширения производства отбеленной бумаги, а также веществ, в технологии синтеза которых использовался хлор.
У человека в целом описано довольно много признаков и симптомов различных заболеваний, которые можно свести к следующим: кожные проявления — хлоракне, гиперпигментация и др.; нарушение работы различных физиологических систем — расстройство пищеварения (рвота, тошнота, непереносимость алкоголя и жирной пищи), нарушения в сердечно-сосудистой системе, мочевыводящих путях, поджелудочной железе и др.; неврологические эффекты — головные боли, невропатия, потеря слуха, обоняния, вкусовых ощущений, нарушение зрения; психические эффекты — нарушение сна, депрессия, немотивированные приступы гнева.
6. СЕРЫ, ФОСФОРА И АЗОТА
При оценке загрязнения биосферы соединениями фосфора важны техногенные пути их поступления. Значительные количества фосфорных соединений входят в состав моющих средств и с их остатками попадают в сточные воды. Стиральные порошки содержат 10-12% пирофосфата калия или от 4-5 до 40-50% триполифос-фата натрия и некоторые другие фосфорсодержащие компоненты. Фосфор также входит в состав инсектицидов, например, хлорофоса. Вместе с промышленными и бытовыми сточными водами соединения фосфора могут поступать в почвы и почвенно-грунтовые воды.
В биосфере азот присутствует в газообразной форме, в виде соединений азотной и азотистой кислот, солей аммония, а также входит в состав разнообразных органических соединений. Техногенные выбросы азота в воздушную среду в основном включают оксид азота и его диоксид. Оксиды азота активно участвуют в фотохимических реакциях, продуцируя озон и азотную кислоту. В настоящее время большую проблему представляет нарушение толщины озонового слоя, на уменьшение которого могут оказывать влияние неполные оксиды азота, вступающие в реакцию окисления от N2O до NO2 и использующие кислород озонового слоя. Разрушение озонового экрана связывают с оксидом азота, который служит источником образования других оксидов, катализирующих фотохимическую реакцию разложения молекул озона. Повышен уровень концентрации нитратов в природных водах в 2-4 раза и более, повышена концентрация аммонийного и нитратного азота до токсичных уровней, что может привести к специфическим заболеваниям типа метгемоглобинемии людей и животных. Как правило, максимальное содержание нитратов обнаруживают в продукции, выращенной на приусадебных участках и арендуемых полях и огородах, где внесение удобрений не контролируется. При взаимодействии нитритов и аминов в живых организмах образуются нитрозамины, являющиеся канцерогенами и способные вызывать нарушения хромосомного аппарата и наследственные уродства.
Фосфор и азот влияют на водные экосистемы. Эвтрофирование, или ненормальное повышение биологической продуктивности водных объектов и почвы, происходит в результате накопления избытка биогенных элементов (веществ). В большинстве водных экосистем лимитирующим биогенным элементом является фосфор, в меньшей степени азот; в такой экосистеме наблюдается низкая продуктивность и как следствие — чистая прозрачная вода, обогащенная кислородом. На дне появляется осадок, растительность начинает вторгаться в экосистему с берегов, экосистема «стареет» и «умирает»: водоем мелеет и зарастает. Признаком «болезни» является развитие сине-зеленых водорослей или других фотосинтезирующих водорослей, вызывающих «цветение» воды. Вода в пресноводных водоемах становится непригодной не только для питья, но и для промышленных нужд, возникает ряд опасностей и неразрешимых пока проблем.
Вследствие эвтрофирования некоторые наземные экосистемы также перерождаются: из них исчезают виды растений, характерные для условий местопроизрастания.
Диоксид серы составляет 95% всех техногенных выбросов серосодержащих веществ в атмосферу. Сернистый газ, окисляясь и взаимодействуя с водой, выпадает в виде кислых дождей. Осадки подкисляют почвы. Из почвенного поглощающего комплекса водород вытесняет обменные основания (Са24, Mg24^. Увеличивается фитотоксичность почв за счет увеличения подвижного алюминия. Сера закрепляется в почве в форме алунита КА1з(ОН)е(804)2. Часть серы сорбируется фульвокислотами. Значительно повышается растворимость всех гумусовых веществ, происходит их вымывание из минеральных горизонтов. Резко изменяется состав и функции микробиоты: уменьшается масса бактерий, увеличивается масса грибов, среди них появляются фитопатогенные виды; снижается скорость денитрификации и азотфиксации, снижается численность и активность почвенной фауны. Блокируется цикл азота на стадии аммиака. Подавляется разложение органических остатков. Модергумусные почвы трансформируются в грубогумусные, усиливается процесс подзолообразования.
В итоге этих изменений плодородие почвы сначала несколько повышается за счет покрытия дефицита серы и азота, а затем значительно и устойчиво снижается. В сельском хозяйстве почвенное плодородие можно восстановить известкованием почвы и соответствующей агротехникой с внесением удобрений. В лесном хозяйстве воздушное загрязнение в сочетании с ухудшением почвенных условий приводит не только к падению прироста древесины, но и к усыханию древостоев и дигрессий лесных биогеоценозов.
7. ФРЕОНЫ
Фреоны (хладоны) — это группа фторсодержащих (могут также содержать хлор и бром) углеводородов жирного ряда; газы или летучие жидкости. Благодаря своим термодинамическим свойствам фреоны нашли широкое применение в практике как хладоносители в холодильных машинах. При контакте с открытым пламенем фреоны разлагаются с образованием токсичных дифтор- и фторхлор-фосгена, устойчивы к действию серной кислоты и концентрированных щелочей, не взаимодействуют с большинством металлов. Фреоны нетоксичны для организма, однако их воздействие на окружающую среду может иметь и негативные последствия — образование озоновой «дыры».
Хладоны обладают привлекательными физико-химическими свойствами, малотоксичны, просты в использовании, не обладают коррозирующим действием, не образуют взрывоопасных смесей с воздухом, имеют исключительно высокую пламеподавляющую способность. Хладоны применяют в качестве хладагентов, про-пеллентов в аэрозольных упаковках косметических средств, как компоненты огнетушащих составов, растворители и т. д. В промышленных масштабах хладоны стали применять с начала 30-х гг. XX в.
В 1974 г. учеными было высказано предположение о том, что хладоны разрушают озоновый слой, защищающий земные организмы от губительного действия ультрафиолетового излучения Солнца. Обоснованность гипотезы (Rowland F. S., Molina M. J.) была подтверждена прямыми измерениями. Озоноразрушающее действие хладонов приводит к образованию так называемых озоновых дыр, т. е. к снижению концентрации озона, что расценивается как серьезная экологическая опасность. В 1987 г. достигнуто международное соглашение — Монреальский протокол, обязывающий все страны-участницы соглашения с 1994 г, ограничить, а к 2000 г. полностью прекратить производство и применение всех озоноразрушающих материалов.
8. ПРОДУКТЫ ПИТАНИЯ
Пища содержит большое количество различных по химической структуре соединений, представляющих потенциальную опасность для здоровья. В связи с повсеместным загрязнением окружающей среды, наличие токсикантов в пищевых продуктах — весьма актуальная проблема.
Контаминанты пищевых продуктов (естественные и антропогенные) представляют наибольшую опасность для здоровья человека. К подобным загрязнителям химического происхождения относятся: металлы (ртуть, свинец, хром, мышьяк, кадмий и т. д.), пестициды и продукты их деградации и метаболизма (в частности, хло-рорганические и фосфорорганические), радиоизотопы (цезий-137, стронций-90, йод-131), такие вещества, как нитриты и нитраты, асбест, соединения фтора, селен, полихлорированные соединения, стимуляторы роста растений и сельскохозяйственных животных и т. д. Среди контаминантов биологического происхождения выделяют бактериальные токсины (клостридии ботулизма, стафилококки), целый спектр микотоксинов (афлаток-сины, охратоксины, трихотецены, патулин, стеригмато-цистин, цитринин и т. п.), токсины одноклеточных и многоклеточных водорослей. Об экологическом значении некоторых из перечисленных загрязнителей и их реальной и потенциальной опасности речь шла в различных разделах настоящего пособия. Остановимся лишь на двух важных аспектах проблемы — загрязнении пищевых продуктов в результате химизации животноводства и использовании пищевых добавок.
В кормах для животных белковый и аминокислотный дефицит восполняется добавлением отходов пище-вой промышленности (рыбная мука, гидролизаты субпродуктов), кормовыми дрожжами, подсолнечными шро-тами и т. п., а также премиксов, содержащих биологически активные вещества (витамины, гормоны, фермен-ты), ростоускорители, антибиотики, сульфаниламиды. Наряду с этим в состав кормовых рационов могут попа-дать такие антропогенные загрязнители, как пестициды, ПАУ, диоксины, полихлорированные бифенилы и трифенилы, нитриты, нитраты, микотоксины и другие опасные для здоровья вещества.
Для стимуляции репродуктивной функции и роста животных часто применяют гормональные препараты — тиреоста-тики, половые гормоны, их синтетические аналоги и анаболические стероиды, фитогррмоны. Часть из них быстро метабо-лизируется в организме и потому не представляет собой очевидной опасности для человека, но остаточные количества в мясе и молоке других (например, диэтилстильбестрола) могут оказывать негативные эффекты на потребителей этих живот-ных продуктов. Продуктивность животноводства увеличивают азотсодержащие кормовые добавки— белково-витаминный концентрат (БВК), дрожжевые, бактериальные и водорослевые белки, мочевину, синтетические аминокислоты. Поскольку БВК производится на парафинах нефти, то в организм могут попадать неутилизированные углеводороды, в частности бензо(а)пирен, а также липиды, не свойственные традиционным продуктам питания, и микотоксины. В продуктах живот-ного происхождения весьма нередко обнаруживаются и пестициды, которые попадают в мясо, молоко, яйца как с кормами, так и в результате обработки сельскохозяйственных животных и птицы. Хлорорганические пестициды накапливаются в тканях и органах и могут сохраняться в них продолжительное время, а фосфорорганические пестициды, являясь фермент-ными ядами, могут длительно циркулировать в организме. Для профилактики ряда заболеваний сельскохозяйственных животных применяют различные лекарственные препараты. Скандальную известность в Германии получила история нелегального использования сердечных средств — бета-блокаторов. Известно, что домашние свиньи из-за близкородствен-ного скрещивания склонны к стрессам и развитию инфарктов. Поэтому им вводили бета-блокаторы при транспортировке с фермы на бойню для предупреждения гибели от инфаркта. Эти лекарственные средства,, обладающие рядом отрицательных побочных эффектов, через свинину попадают в организм человека. Также негативное влияние на людей могут оказывать остаточные количества антибиотиков как в результате прямого токсического действия, так и путем вызывания аллергичес-ких реакций или развитием устойчивых к антибиотикам штаммов микроорганизмов. В последнем случае попытки лечения человека такими антибиотиками окажутся безуспешными. Это проблема относительно новая, пока последствия внедрения химизации в животноводство, особенно отдаленные эффекты, изучены недостаточно.
Пищевые добавки люди стали применять с незапамятных времен, в частности поваренную соль, винный уксус, пряности, сахароподобные вещества. В основном пищевые добавки представляют собой химические вещества природного или синтетического происхождения, которые вносят в продукты питания с целью улучшения качества, придания приятонго вкуса, запаха или цвета, увеличения сроков хранения и т. д.
В нашей стране в отношении пищевых добавок действует экологически оправданный принцип — «запрещено все, что не разрешено». Так, среди синтетических красителей применяются лишь два — индигокармин и тартразин, в то время как в мире используется довольно большое их количество. Часть из них обладает аллер-генными, мутагенными или канцерогенными свойствами. То же относится и к консервантам, эмульгаторам, стабилизаторам, осветлителям, подсластителям. В связи с тем, что сегодня отечественный рынок наполняется продуктами иностранного производства, содержащими самые разнообразные пищевые добавки, и не всегда удовлетворительного качества, очень важно знать тегатив-иые свойства этих добавок. Последние, согласно требованиям ФАО/ВОЗ, отражены в маркировке продуктов. Французскими специалистами из Исследовательского центра Hospital-Villejuif составлен перечень вредных для здоровья веществ, применяемых для окрашивания и консервирования пищевых продуктов. Согласно этому списку, агенты, обозначенные на этикетках продуктов как Е102, Е110, Е120, Е124, Е127 классифицированы как «опасные» (Е123 «очень опасный»), к «запрещенным» отнесены Е103, Е105, Elll, E 121, Е125, Е126, El 30, El 52; канцерогенными считаются El 30, El 42, E210, E211, E212, E213, E214, E215, E216. E217, E240, ЕЗЗО; вызывающими расстройство кишечника Е221, Е222, Е223, Е224, Е226; вызывающими расстройство желудка Е338, Е339, Е340, Е341, Е407, Е450, Е461, Е462, Е463, Е465, Е466; нарушения кровяного давления вызывают препараты Е250, Е251; кожные заболевания возникают при применении Е230, Е231, Е232, Е233, а «подозрительными» считаются Е104, Е122, Е141, Е150. Е171, Е173. Е180, Е241, Е467.
Природные опасности
1. Понятие о природных опасностях
К природным опасностям относятся стихийные явления, которые представляют непосредственную угрозу для жизни и здоровья людей. Например, землетрясения, извержения вулканов, снежные лавины, сели, оползни, камнепады, наводнения, штормы, цунами, тропические циклоны, смерчи, молнии, туманы, космические излучения и космические тела и многие другие явления. Будучи естественными феноменами жизни и развития природной среды, они в то же время воспринимаются человеком как аномальные.
В безопасности деятельности рассматриваются не все природные катастрофы и стихийные явления, а лишь те из них, которые могут принести ущерб здоровью или привести к гибели людей.
Некоторые природные опасности нарушают или затрудняют нормальное функционирование систем и органов человека. К таким опасностям относятся, например, туман, гололед, жара, барометрическое давление электромагнитные излучения, холод и другие.
Несмотря на глубокие различия в существе, все природные опасности подчиняются некоторым общим закономерностям.
Во-первых, для каждого вида опасностей характерна определенная пространственная приуроченность. Во-вторых, установлено, что чем больше интенсивность (мощность) опасного явления, тем реже оно случается. В-третьих, каждому виду опасностей предшествуют некоторые специфические признаки (предвестники). В-четвертых, при всей неожиданности той или иной природной опасности ее проявление может быть предсказано. Наконец, в-пятых, во многих случаях могут быть предусмотрены пассивные и активные защитные мероприятия от природных опасностей.
Говоря о природных опасностях, следует подчеркнуть роль антропогенного влияния на их проявление. Известны многочисленные факты нарушения равновесия в природной среде в результате деятельности человека, приводящие к усилению опасных воздействий. Так, согласно международной статистике, происхождение около 80% современных оползней связаны с деятельностью человека. В результате вырубок леса возрастает активность селей, увеличивается паводковый расход (рис. 12). В настоящее время масштабы использования природных ресурсов существенно возросли. Это привело к тому, что стали ощутимо проявляться черты глобального экологического кризиса. Природа как бы мстит человеку за грубое вторжение в ее владение. Об этом более ста лет назад предупреждал Ф. Энгельс: «Не будем, однако, слишком обольщаться нашими победами над природой. За каждую такую победу она мстит». Отмеченное обстоятельство следует иметь в виду в хозяйственной деятельности.
Соблюдение природного равновесия является важнейшим профилактическим фактором, учет которого позволит сократить число опасных явлений.
Между природными опасностями существует взаимная связь. Одно явление может послужить причиной, спусковым механизмом последующих.
По имеющимся оценкам, число опасных природных событий на Земле с течением времени не растет или почти не растет, но человеческие жертвы и материальный ущерб увеличиваются. Ежегодная вероятность гибели жителя планеты Земля от природных опасностей ориентировочно равна 10~5, т. е. на каждые сто тысяч жителей погибает один человек.
Предпосылкой успешной защиты от природных опасностей является изучение их причин и механизмов. Зная сущность процессов, можно их предсказывать. А своевременный и точный прогноз опасных явлений является наиважнейшей предпосылкой эффективной защиты. На рис. 14 графически отображена примерная зависимость - между изученностью опасностей, их прогнозом и защитой от них.
По вертикальной оси расположена шкала, показывающая уровни знания сущности процесса (нуль означает, что природа явления совсем не изучена, 100% — полное знание существа явления). То же самое относится к оси прогноза и защиты.
Защита от природных опасностей может быть активной (строительство инженерно-технических сооружений, интервенция в механизм явления, мобилизация естественных ресурсов, реконструкция природных объектов и др.) и пассивной (например, использование укрытий). В большинстве случаев активные и пассивные методы сочетаются.
По локализации природные опасности могут быть с определенной степенью условности разделены на 4 группы: литосферные (например, землетрясения, вулканы, оползни); гидросферные (например, наводнения, цунами, штормы); атмосферные (например, ураганы, бури, смерчи, град, ливень); космические (например, астероиды, планеты, излучения).
2. ЛИТОСФЕРНЫЕ ОПАСНОСТИ ЗЕМЛЕТРЯСЕНИЯ
Планета Земля представляет по форме трехосный эллипсоид со средним радиусом 6371 км. Земля состоит из нескольких различных по составу и физическим свойствам оболочек-геосфер. В центре Земли находится ядро, за ним следует мантия, затем земная кора, гидросфера и атмосфера. Верхняя граница мантии проходит на глубине от 5 до 70 км по поверхности Мохоровичича (см. рис. 16), нижняя — на глубине 2900 км по границе с ядром Земли. Мантия Земли делится на верхнюю толщиной около 900 км и нижнюю — около 2000 км. Верхняя мантия вместе с земной корой образуют литосферу. Температура в мантии считается равной 2000-2500°С, а давление находится в пределах 1-130 ГН/м2. Именно в мантии происходят тектонические процессы, вызывающие землетрясения. Наука, изучающая землетрясения, называется сейсмологией.
Землетрясения — это подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний.
Природа землетрясений до конца не раскрыта. Землетрясения происходят в виде серии толчков, которые включают форшоки, главный толчок и афтершоки. Число толчков и промежутки времени между ними могут быть самыми различными. Главный толчок характеризуется наибольшей силой. Продолжительность главного толчка обычно несколько секунд, но субъективно людьми толчок воспринимается как очень длительный. Согласно данным психиатров и психологов, изучавших землетрясения, афтершоки иногда производят более тяжелое психическое воздействие, чем главный толчок. У людей под воздействием афтершоков возникало ощущение неотвратимости беды, и они, скованные страхом, бездействовали вместо того, чтобы искать безопасное место и защищаться.
Очаг землетрясения — это некоторый объем в толще Земли, в пределах которого происходит высвобождение энергии. Центр очага — условная точка, именуемая гипоцентром, или фокусом.
Проекция гипоцентра на поверхность Земли называется эпицентром. Вокруг него происходят наибольшие разрушения. Это так называемая плейстосейстовая область.
Количество землетрясений, ежегодно регистрируемых на земном шаре, измеряется сотнями тысяч, а по данным других авторов — миллионами. В среднем каждые 30 с регистрируется одно землетрясение. Однако большинство из них относится к слабым, и мы их не замечаем. Силу землетрясения оценивают по интенсивности разрушений на поверхности Земли. Существует много сейсмических шкал интенсивности. Шкалу интенсивности в 80-е гг. XIX в. создали Де Росси и Форель (от I до X), в 1920 г. итальянец Меркалли предложил другую шкалу с диапазоном значений от I до XII, в 1931 г. эта шкала была усовершенствована Вудом и Ньюменом. В 1963 г. С. Медведев с соавторами предложили новую шкалу. По международной шкале MSK-64 сила землетрясений оценивается в баллах.
Линии, соединяющие пункты с одинаковой интенсивностью колебаний, называются изосейстами.
В 1935 г. профессор Калифорнийского технологического института Ч. Рихтер предложил оценивать энергию землетрясения магнитудой (от лат. magnitude — величина). Сейсмологи используют несколько магнитуд-ных шкал. В Японии используют шкалу из семи магни-туд. Именно из этой шкалы исходил Рихтер К. Ф., предлагая свою усовершенствованную 9-магнитудную шкалу. Шкала Рихтера — сейсмическая шкала магнитуд, основанная на оценке энергии сейсмических волн, возникающих при землетрясениях. Магнитуда самых сильных землетрясений по шкале Рихтера не превышает 9.
Магнитуда землетрясений — условная величина, характеризующая общую энергию упругих колебаний, вызванных землетрясением. Магнитуда пропорциональна логарифму энергии землетрясений и позволяет сравнивать источники колебаний по их энергии.
Значение магнитуды землетрясений определяется из наблюдений на сейсмических станциях. Колеба-ния грунта, возникающие при землетрясениях, регистрируются спец. приборами — сейсмографами.
Результатом записи сейсмических колебаний является сейсмограмма, на которой записываются продольные и поперечные волны. Наблюдения над землетрясениями осуществляются сейсмической службой страны
Землетрясения распространены по земной поверхности очень неравномерно. Анализ сейсмических, географических данных позволяет наметить те области, где следует ожидать в будущем землетрясений и оценить их интенсивность. В этом состоит сущность сейсмического районирования.
Карта сейсмического районирования — это официальный документ, которым должны руководствоваться проектирующие организации.
Пока не решена проблема прогноза, т. е. определения времени будущего землетрясения. Основной путь к решению этой проблемы — регистрация «предвестников» землетрясения: слабых предварительных толчков (форшоков), деформации земной поверхности, изменений параметров геофизических полей и др. Знание временных координат потенциального землетрясения во многом определяет эффективность мероприятий по защите во время землетрясений.
В районах, подверженных землетрясениям, осуществляется сейсмостойкое, или антисейсмическое строительство. Это значит, что при проектировании и строительстве учитываются возможные воздействия на здания и сооружения сейсмических сил. Требования к объектам, строящимся в сейсмических районах, устанавливаются строительными нормами и правилами и другими документами. По принятой в России 12-балльной шкале опасными для зданий и сооружений считаются землетрясения, интенсивность которых 7 баллов и более. Строительство в районах с сейсмичностью, превышающей 9 баллов, неэкономично. Поэтому в правилах и нормах указания ограничены районами 7-9-балльной сейсмичности. Обеспечение полной сохранности зданий во время землетрясений обычно требует больших затрат на антисейсмические мероприятия, а в некоторых случаях практически неосуществимо. Учитывая, что сильные землетрясения происходят редко, нормы допускают возможность повреждения элементов, не представляющих угрозы для людей. Наиболее благоприятными в сейсмическом отношении считаются скальные грунты. Сейсмостойкость сооружений существенно зависит от качества строительных материалов и работ. Методы расчетной оценки сейсмостойкости сооружений имеют приближенный характер. Поэтому нормы вводят ряд обязательных конструктивных ограничений и требований. К их числу относится, например, ограничение размеров строящихся зданий в плане и по высоте. Для уточнений данных сейсмического районирования проводится сейсмическое микрорайонирование, с помощью которого интенсивность землетрясений в баллах, указанная на картах, может быть скорректирована на + 1...2 балла в зависимости от местных тектонических, геоморфологических и грунтовых условий.
Землетрясение — грозная стихия, не только разрушающая города, но и уносящая тысячи человеческих жизней. Так, в 1908 г. землетрясением с магнитудой 7,5 разрушен г. Мессина (Италия), погибло более 100 тыс. человек. В 1923 г. катастрофическое землетрясение (магнитуда 8,2) с эпицентром на острове Хонсю (Япония) разрушило Токио, Иокогаму, погибли около 150 тыс. человек. В 1948 г. землетрясением разрушен Ашхабад, магниту да 7, сила — IX баллов.
Иногда землетрясениям предшествуют грозовые разряды в атмосфере, выделения метана из земной коры. Это так называемые «предвестники» землетрясений. Возникающие при землетрясении колебания могут быть причиной вторичных эффектов в виде оползней и селевых потоков, цунами (сейши), снежных лавин, наводнений, разломов в скальных породах, пожаров, коробления земной поверхности.
Проблема защиты от землетрясений стоит очень остро. В ней необходимо различать две группы антисейсмических мероприятий:
а) предупредительные, профилактические мероприятия, осуществляемые до возможного землетрясения;
б) мероприятия, осуществляемые непосредственно перед, во время и после землетрясения, т. е. действия в чрезвычайных ситуациях.
К первой группе относится изучение природы землетрясений, раскрытие его механизма, идентификация предвестников, разработка методов прогноза и др.
На основе исследований природы землетрясений могут быть разработаны методы предотвращения и прогноза этого опасного явления. Очень важно выбирать места расположения населенных пунктов и предприятий с учетом сейсмостойкости района. Защита расстоянием — лучшее средство при решении вопросов безопасности при землетрясениях. Если строительство все-таки приходится вести в сейсмоопасных районах, то необходимо учитывать требования соответствующих правил и норм (СНиПов), сводящиеся в основном к усилению зданий и сооружений. Эффективность действий в условиях землетрясений зависит от уровня организации аварийно-спасательных работ и обученности населения, эффективности системы оповещения.
СЕЛИ
Сели — кратковременные бурные паводки на горных реках, имеющие характер грязекаменных потоков.
Причинами селей могут явиться землетрясения, обильные снегопады, ливни, интенсивное таяние снега.
Основная опасность — огромная кинетическая энергия грязеводных потоков, скорость движения которых может достигать 15 км/ч.
По мощности селевые потоки делят на группы: мощные (вынос более 100 тыс. м3 селевой массы), средней мощности (от 10 до 100 тыс. м3), слабой мощности (менее 10 тыс. м3). Селевые потоки происходят внезапно, быстро нарастают и продолжаются обычно от 1 до 3 ч, иногда 6-8 ч. Сели прогнозируются по результатам наблюдений за прошлые годы и по метеорологическим прогнозам.
К профилактическим противоселевым мероприятиям относятся: гидротехнические сооружения (селезадер-живающие, селенаправляющие и др.), спуск талой воды, закрепление растительного слоя на горных склонах, лесопосадочные работы, регулирование рубки леса и др. В селеопасных районах создаются автоматические системы оповещения о селевой угрозе и разрабатываются соответствующие планы мероприятий.
СНЕЖНЫЕ ЛАВИНЫ
Лавина — это снежный обвал, масса снега, падающая или сползающая с горных склонов под влиянием какого-либо воздействия и увлекающая на своем пути новые массы снега.
Одной из побудительных причин лавины может быть землетрясение. Снежные лавины распространены в горных районах.
По характеру движения лавины делятся на склоновые, лотковые и прыгающие.
Опасность лавины заключается в большой кинетической энергии лавинной массы, обладающей огромной разрушительной силой. Лавины образуются на безлесных склонах крутизной от 15° и более. Оптимальные условия для образования лавин на склонах в 30-40°. При крутизне более 50° снег осыпается к подножию склона и лавины не успевают сформироваться. Сход лавины начинается при слое свежевыпавшего снега в 30 см, а старого более 70 см. Скорость схода лавины может достигать 100 м/с, а в среднем 20-30 м/с. Точный прогноз времени схода лавины невозможен. Имеются сведения о том, что в Европе ежегодно лавины разного вида уносят в среднем около 100 человеческих жизней.
Противолавинные профилактические мероприятия делятся на 2 группы: пассивные и активные.
Пассивные способы состоят в использовании опорных сооружений, дамб, лавинорезов, надолбов, снегоудерживающих щитов, посадках и восстановлении леса и др.
Активные методы заключаются в искусственном провоцировании схода лавины в заранее выбранное время и при соблюдении мер безопасности. С этой целью производится обстрел головных частей потенциальных срывов лавины разрывными снарядами или минами, организуются взрывы направленного действия, используются сильные источники звука. В лавиноопасных регионах могут создаваться Противолавинные службы, предусматривается система оповещения и разрабатываются планы мероприятий по защите от лавин.
ИЗВЕРЖЕНИЕ ВУЛКАНОВ
Совокупность явлений, связанных с перемещением магмы в земной коре и на ее поверхности, называется вулканизмом.
Магма (от греч. magma — густая мазь) — это расплавленная масса преимущественно силикатного состава, образующаяся в глубинных зонах Земли. Достигая земной поверхности, магма изливается в виде лавы.
Лава отличается от магмы отсутствием газов, улетучивающихся при извержении. Вулканы (по имени бога огня Вулкана) представляют геологические образования, возникающие над каналами и трещинами в земной коре, по которым извергается на земную поверхность магма. Обычно вулканы представляют отдельные горы, сложенные продуктами извержений.
Вулканы разделяются на действующие, уснувшие и потухшие.
К уснувшим относятся вулканы, об извержениях которых нет сведений, но они сохранили свою форму и под ними происходят локальные землетрясения.
Потухшие — это различные вулканы без какой-либо вулканической активности.
Магматические очаги находятся в мантии на глубине 50-70 км или в земной коре на глубине 5-6 км.
Извержения вулканов бывают длительными и кратковременными. Продукты извержения (газообразные, жидкие и твердые) выбрасываются на высоту 1-5 км и переносятся на большие расстояния. Концентрация вулканического пепла бывает настолько большой, что возникает темнота, подобная ночной. Объем излившейся лавы достигает десятков км3. Известно извержение вулкана Везувия в августе 79 г., в результате которого погиб город Помпеи. Толщина слоя вулканического пепла, покрывшего этот город, составляет 8 м.
Существуют следующие типы извержений: эффузивный (гавайский), смешанный (стромболианский), эк-струзивный (купольный).
Замечена взаимозависимость между вулканической деятельностью и землетрясениями,
Основой прогноза извержения являются сейсмические толчки, характеризующие начало извержения.
Основные опасности — лавовые фонтаны, потоки горячей лавы, раскаленные газы. Взрывы вулканов могут инициировать оползни, обвалы, лавины, а на морях и океанах — цунами.
Профилактические мероприятия состоят в изменении характера землепользования, строительстве дамб, отводящих потоки лавы, в бомбардировке лавового потока для перемешивания лавы с землей и превращения ее в менее жидкую и др.
ОПОЛЗНИ
Оползень — скользящее смещение вниз по уклону под действием сил тяжести масс грунта, формирующих склоны холмов, гор, речные, озерные и морские террасы.
По механизму оползневого процесса выделяют такие типы оползней: сдвиг, выдавливание, гидравлический вынос и др.
По глубине залегания поверхностного скольжения различают оползни: поверхностные — до 1 м, мелкие — до 5 м, глубокие — до 20 м, очень глубокие — свыше 20м.
По мощности, вовлекаемой в процесс массы горных пород, оползни распределяют на: малые — до 10 тыс. м3, крупные — от 101 до 1000 тыс. м3, очень крупные — свыше 1000 тыс. M3.
По скорости движения оползни бывают: быстрые (время развития измеряется секундами или минутами), средней скорости (минуты, часы), медленные (дни, годы).
Оползни формируются, как правило, на участках, сложенных чередующимися водоупорными и водоносными породами грунта. Оползни возникают вследствие нарушения равновесия пород. Когда силы сцепления на поверхности скольжения становятся меньше составляющей силы тяжести, масса начинает движение. Опасность
оползней заключается в том, что огромные массы почво-грунтов, внезапно смещаясь, могут привести к разрушению зданий и сооружений и большим жертвам.
Побудителями оползневых процессов являются землетрясения, вулканы, строительные работы и др.
Предупреждение и защита от оползней предусматривает ряд пассивных и активных мероприятий.
К пассивным относят мероприятия охранно-ограничительного вида: запрещение строительства, производства взрывных работ, надрезки оползневых склонов.
К активным мероприятиям относят устройство различных инженерных сооружений: подпорных стенок, свайных рядов и т. п. В опасных местах предусматривается система наблюдения и оповещения населения, а также действия соответствующих служб по организации аварийно-спасательных работ.
3. ГИДРОСФЕРНЫЕ ОПАСНОСТИ НАВОДНЕНИЯ
Половодьем называют ежегодно повторяющееся в один и тот же сезон относительно длительное увеличение водоносности рек, сопровождающееся повышением уровня воды.
Паводок — сравнительно кратковременное и непериодическое поднятие уровня воды.
Следующие один за другим паводки могут образовать половодье, а последнее — наводнение.
Значительное затопление водой местности в результате подъема уровня воды в реке, озере или море, вызываемого различными причинами, называется наводнением.
Наводнение — наиболее распространенная природная опасность. Наводнение на реке происходит от резкого возрастания количества воды вследствие таяния снега или ледников, расположенных в ее бассейне, а также в результате выпадения обильных осадков. Наводнения нередко вызываются загромождением русла льдом при ледоходе (затор) или закупориванием русла внутренним , льдом под неподвижным ледяным покровом и образованием ледяной пробки (зажор). Наводнения нередко возникают под действием ветров, нагоняющих воду с моря
и вызывающих повышение уровня за счет задержки в устье приносимой рекой воды. Эти наводнения называют наганными.
Наводнения такого типа наблюдались в дельте Невы (1824, 1924 гг.), в Голландии, в Англии, в Гамбурге и других регионах земного шара.
На морских побережьях и островах наводнения могут возникнуть в результате затопления волной, образующейся при землетрясениях, извержениях вулканов, цунами.
Наводнения угрожают почти 3/4 земной суши. По данным ЮНЕСКО, от речных наводнений погибло в 1947-67 гг. около 200 000 человек. Специалисты считают, что людям грозит опасность, когда слой воды достигает 1м, а скорость потока превышает 1 м/с. Подъем воды на 3 м уже приводит к разрушению домов. Наводнения приносят и большой материальный ущерб. Наводнения постоянно сопровождают человечество.
Но ветер не единственная причина наводнения. Иногда и при полном безветрии бывали наводнения. Причиной их были длинные волны, возникающие в море под влиянием циклона. Длинная волна со скоростью 50-60 км/ч движется в Финский залив, становясь на мелководье и в сужающемся заливе более высокой, и препятствует речному стоку. При одновременном действии всех возможных факторов подъем уровня воды в дельте Невы может достичь 550 см. Гибель людей во время наводнений, огромный материальный ущерб, приносимый им, заставляют людей изучать эти явления и изыскивать способы защиты от них.
Наводнения на реках по высоте подъема воды, площади затопления и величине ущерба делят на 4 категории: низкие (малые), высокие (средние), выдающиеся (большие) и катастрофические. Существует классификация наводнений по признаку причин: ливневые, запорные, селевые, нагонные, завальные, аварии на гидротехнических сооружениях.
Частота наводнений различна в различных регионах. Низкие наводнения повторяются через 5-10 лет, высокие — через 20-25 лет, выдающиеся — через 50-100 лет, катастрофические не чаще одного раза в 100–200 лет. Продолжительность наводнений от нескольких дней до 80-90 дней.
Защита людей в условиях наводнений включает оповещение, эвакуацию людей и другие мероприятия в соответствии с планами борьбы с наводнениями и защиты населения. Наиболее эффективный способ борьбы с речными наводнениями — регулирование речного стока путем создания водохранилищ.
ЦУНАМИ
Цунами — это гравитационные волны очень большой длины, возникающие в результате сдвига вверх или вниз протяженных участков дна при сильных подводных землетрясениях, реже вулканических извержениях.
В силу малой сжимаемости воды и быстроты процесса деформации участков дна опирающийся на них столб воды также смещается, не успевая растечься, в результате чего на поверхности воды образуется некоторое возвышение или понижение. Образовавшееся возмущение переходит в колебательное движение толщи воды, распространяющееся со скоростью, пропорциональной квадратному корню из глубины моря (50-1000 км/ч). Расстояние между соседними гребнями волн находится в пределах 5...1500 км. Высота волн в области их возникновения находится в пределах 0,1-5 м, у побережья — до 10 м, а в клинообразных бухтах, долинах рек — свыше 50 м. В глубь суши цунами могут распространяться до 3 км. Это и есть волны-цунами (япон.).
Известно более 1000 случаев цунами, из них около 100 с катастрофическими последствиями.
Основной район, где проявляются цунами, — побережье Тихого океана (80% случаев), а также Атлантический океан и реже Средиземное море. Цунами очень быстро достигают берега. Обладая большой энергией, достигающей иногда 1020 эрг, цунами производят большие разрушения и представляют угрозу для людей.
Надежной защиты от цунами нет. Мероприятиями по частичной защите является сооружение волнорезов, молов, насыпей, посадка лесных полос, устройство гаваней. Цунами не опасно для судов в открытом море.
Важное значение для защиты населения от цунами имеют службы предупреждения о приближении волн, основанные на опережающей регистрации землетрясений береговыми сейсмографами.
4. АТМОСФЕРНЫЕ ОПАСНОСТИ
Газовая среда вокруг Земли, вращающаяся вместе с нею, называется атмосферой.
Состав ее у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, неон и др. газы. В нижних 20 км содержится водяной пар. На высоте 20-25 км расположен слой озона, который предохраняет живые организмы на
Земле от вредного коротковолнового излучения. Выше 100 км молекулы газов разлагаются на атомы и ионы, образуя ионосферу. В зависимости от распределения температуры атмосферу подразделяют на тропосферу, стратосферу, мезосферу, термосферу, экзосферу.
Неравномерность нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли. Сила ветра у земной поверхности оценивается по шкале Бофорта.
Атмосферное давление распределяется неравномерно, что приводит к движению воздуха относительно Земли от высокого давления к низкому. Это движение называется ветром. Область пониженного давления в атмосфере с минимумом в центре называется циклоном. Циклон в поперечнике достигает нескольких тысяч километров. В Северном полушарии ветры в циклоне дуют против часовой стрелки, а в Южном — по часовой. Погода при циклоне преобладает пасмурная, с сильными ветрами.
Антициклон — это область повышенного давления в атмосфере с максимумом в центре. Поперечник антициклона составляет несколько тысяч километров. Антициклон характеризуется системой ветров, дующих по часовой стрелке в Северном полушарии и против — в Южном, малооблачной и сухой погодой и слабыми ветрами.
В атмосфере имеют место следующие электрические явления: ионизация воздуха, электрическое поле атмосферы, электрические заряды облаков, токи и разряды.
В результате естественных процессов, происходящих в атмосфере, на Земле наблюдаются явления, которые представляют непосредственную опасность или затрудняют функционирование систем человека. К таким атмосферным опасностям относятся туманы, гололед, молнии, ураганы, бури, смерчи, град, метели, торнадо, ливни и др.
Гололед — слой плотного льда, образующийся на поверхности земли и на предметах (проводах, конструкциях) при замерзании на них переохлажденных капель тумана или дождя. Обычно гололед наблюдается при температурах воздуха от 0 до -3°С, но иногда и более низких. Корка намерзшего льда может достигать толщины нескольких сантиметров. Под действием веса льда могут разрушаться конструкции, обламываться сучья. Гололед повышает опасность для движения транспорта и людей.
Туман — скопление мелких водяных капель или ледяных кристаллов, или тех и других в приземном слое атмосферы (иногда до высоты в несколько сотен метров), понижающее горизонтальную видимость до 1 км и менее. В очень плотных туманах видимость может понижаться до нескольких метров. Туманы образуются в результате конденсации или сублимации водяного пара на аэрозольных (жидких или твердых) частицах, содержащихся в воздухе (т. н. ядрах конденсации). Туман из водяных капель наблюдается главным образом при температурах воздуха выше -20°С. При температуре ниже -20°С преобладают ледяные туманы. Большинство капель тумана имеет радиус 5-15 мкм при положительной температуре воздуха и 2-5 мкм при отрицательной температуре. Количество капель в 1 см3 воздуха колеблется от 50-100 в слабых туманах и до 500-600 в плотных. Туманы по их физическому генезису подразделяются на туманы охлаждения и туманы испарения.
По синоптическим условиям образования различают туманы внутримассовые, формирующиеся в однородных воздушных массах, и туманы фронтальные, появление которых связано с фронтами атмосферными. Преобладают туманы внутримассовые.
В большинстве случаев это туманы охлаждения, причем их делят на радиационные и адвективные. Радиационные туманы образуются над сушей при понижении температуры вследствие радиационного охлаждения земной поверхности, а от нее и воздуха. Наиболее часто они образуются в антициклонах. Адвективные туманы образуются вследствие охлаждения теплого влажного воздуха при его движении над более холодной поверхностью суши или воды. Адвективные туманы развиваются как над сушей, так и над морем, чаще всего в теплых секторах циклонов. Адвективные туманы устойчивее, чем радиационные.
Фронтальные туманы образуются вблизи атмосферных фронтов и перемещаются вместе с ними. Туманы препятствуют нормальной работе всех видов транспорта. Прогноз туманов имеет важное значение в безопасности.
Град — вид атмосферных осадков, состоящих из сферических частиц или кусочков льда (градин) размером от 5 до 55 мм, встречаются градины размером 130 мм и массой около 1 кг. Плотность градин 0,5-0,9 г/см3. В 1 мин на 1 м2 падает 500-1000 градин. Продолжительность выпадения града обычно 5-10 мин, редко – до 1 ч.
Разработаны радиологические методы определения градоносности и градоопасности облаков и созданы оперативные службы борьбы с градом. Борьба с градом основана на принципе введения с помощью ракет или снарядов в облако реагента (обычно йодистого свинца или йодистого серебра), способствующего замораживанию переохлажденных капель. В результате появляется огромное количество искусственных центров кристаллизации. Поэтому градины получаются меньших размеров и они успевают растаять еще до падения на землю.
Гром — звук в атмосфере, сопровождающий разряд молнии. Вызывается колебаниями воздуха под влиянием мгновенного повышения давления на пути молнии.
Молния — это гигантский электрический искровой разряд в атмосфере, проявляющийся обычно яркой вспышкой света и сопровождающим ее громом.
Наиболее часто молнии возникают в кучево-дождевых облаках. В раскрытие природы молнии внесли вклад американский физик Б. Франклин (1706-1790), русские ученые М. В. Ломоносов (1711-1765) и Г. Рихман (1711-1753), погибший от удара молнии при исследованиях атмосферного электричества.
Молнии делятся на внутриоблачные, т. е. проходящие в самих грозовых облаках, и наземные, т. е. ударяющие в землю. Процесс развития наземной молнии состоит из нескольких стадий.
На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизируют их. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, соединяясь, дают начало яркому термоионизированному каналу с высокой проводимостью — ступенчатому лидеру. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью я 5 х 107 м/с, после чего его движение приостанавливается на несколько десятков мксек, а свечение сильно ослабевает. В последующей стадии лидер снова продвигается на несколько десятков метров, яркое свечение при этом охватывает все пройденные ступени. Затем снова следует остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2 х 105 м/сек. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности земли предметов выбрасывается ответный стример, соединяющийся с лидером. На этом явлении основано создание молниеотвода.
В заключительной стадии по ионизированному лидером каналу следует обратный, или главный разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, сильной яркостью и большой скоростью продвижения » Ю^.-Ю8 м/с. Температура канала при главном разряде может превышать 25 000'С, длина канала молнии 1-10 км, диаметр — несколько сантиметров. Такие молнии называются затяжными. Они наиболее часто бывают причиной пожаров. Обычно молния состоит из нескольких повторных разрядов, общая длительность которых может превышать 1 с.
Внутриоблачные молнии включают в себя только лидерные стадии, их длина от 1 до 150 км. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы. Эти обстоятельства учитываются при устройстве молниеотвода. В отличие от опасных молний, называемых линейными, существуют шаровые молнии, которые нередко образуются вслед за ударом линейной молнии.
Молнии, как линейная, так и шаровая, могут быть причиной тяжелых травм и гибели людей. Удары молний могут сопровождаться разрушениями, вызванными ее термическими и электродинамическими воздействиями. Наибольшие разрушения вызывают удары молний в наземные объекты при отсутствии хороших токопроводящих путей между местом удара и землей. От электрического пробоя в материале образуются узкие каналы, в которых создается очень высокая температура, и часть материала испаряется со взрывом и последующим воспламенением. Наряду с этим возможно возникновение больших разностей потенциалов между отдельными предметами внутри строения, что может быть причиной поражения людей электрическим током. Весьма опасны прямые удары молний в воздушные линии связи с деревянными опорами, так как при этом могут возникать разряды с проводов и аппаратуры (телефон, выключатели) на землю и другие предметы, что может привести к пожарам и поражению людей электрическим током. Прямые удары молнии в высоковольтные линии электропроводов могут быть причиной коротких замыканий. Опасно попадание молнии в самолеты. При ударе молнии в дерево могут быть поражены находящиеся вблизи него люди.
ЗАЩИТА ОТ МОЛНИЙ
Разряды атмосферного электричества способны вызывать взрывы, пожары и разрушения зданий и сооружений, что привело к необходимости разработки специальной системы молниезащиты.
Молниезащита — комплекс защитных устройств, предназначенных для обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от разрядов молнии.
Молния способна воздействовать на здания и сооружения прямыми ударами (первичное воздействие), которые вызывают непосредственное повреждение и разрушение, и вторичными воздействиями — посредством явлений электростатической и электромагнитной индукции. Высокий потенциал, создаваемый разрядами молнии, может заноситься в здания также по воздушным линиям и различным коммуникациям. Канал главного разряда молнии имеет температуру 20 OOO'C и выше, вызывающую пожары и взрывы в зданиях и сооружениях.
Здания и сооружения подлежат молниезащите в соответствии с СН 305-77. Выбор защиты зависит от назначения здания или сооружения, интенсивности грозовой деятельности в рассматриваемом районе и ожидаемого числа поражений объекта молнией в год.
Интенсивность грозовой деятельности характеризуется средним числом грозовых часов в году п, или числом грозовых дней в году Пд. Определяют ее с помощью соответствующей карты, приведенной в СН 305-77, для конкретного района.
Применяют и более обобщенный показатель — среднее число ударов молнии в год (п) на 1 км2 поверхности земли, который зависит от интенсивности грозовой деятельности.
В зависимости от вероятности вызванного молнией пожара или взрыва, исходя из масштабов возможных разрушений или ущерба, нормами установлены три категории устройства молниезащиты.
В зданиях и сооружениях, отнесенных к I категории молниезащиты, длительное время сохраняются и систематически возникают взрывоопасные смеси газов, паров и пыли, перерабатываются или хранятся взрывчатые вещества. Взрывы в таких зданиях, как правило, сопровождаются значительными разрушениями и человеческими жертвами.
В зданиях и сооружениях II категории молниезащиты названные взрывоопасные смеси могут возникнуть только в момент производственной аварии или неисправности технологического оборудования, взрывчатые вещества хранятся в надежной упаковке. Попадание молнии в такие здания, как правило, сопровождается значительно меньшими разрушениями и жертвами.
В зданиях и сооружениях III категории от прямого удара молнии может возникнуть пожар, механические разрушения и поражения людей. К этой категории относятся общественные здания, дымовые трубы, водонапорные башни и др.
Здания и сооружения, относимые по устройству молниезащиты к I категории, должны быть защищены от прямых ударов молнии, электростатической и электромагнитной индукции и заноса высоких потенциалов через наземные и подземные металлические коммуникации по всей территории России.
Здания и сооружения II категории молниезащиты должны быть защищены от прямых ударов молнии, вторичных ее воздействий и заноса высоких потенциалов по коммуникациям только в местностях со средней интенсивностью грозовой деятельности.
Здания и сооружения, отнесенные по устройству молниезащиты к III категории, должны быть защищены от прямых ударов молнии и заноса высоких потенциалов через наземные металлические коммуникации, в местностях с грозовой деятельностью 20 ч и более в год.
Здания защищаются от прямых ударов молнии молниеотводами. Зоной защиты, молниеотвода называют часть пространства, примыкающую к молниеотводу, внутри которого здание или сооружение защищено от прямых ударов молнии с определенной степенью надежнос-. ти. Зона защиты А обладает степенью надежности 99,5% и выше, а зона-защиты Б — 95% и выше.
Молниеотводы состоят из молниеприемников (воспринимающих на себя разряд молнии), заземлителей, служащих для отвода тока молнии в землю, и токоотво-дов, соединяющих молниеприемники с заземлителями.
Молниеотводы могут быть отдельно стоящими или Устанавливаться непосредственно на здании или сооружении. По типу молниеприемника их подразделяют на стержневые, тросовые и комбинированные. В зависимости от числа действующих на одном сооружении молниеотводов, их подразделяют на одиночные, двойные и многократные.
Молниеприемники стержневых молниеотводов устраивают из стальных стержней различных размеров и форм сечения. Минимальная площадь сечения молние-приемника — 100 мм2, чему соответствует круглое сечение стержня диаметром 12 мм, полосовая сталь 35 х 3 мм или газовая труба со сплющенным концом.
Молниеприемники тросовых молниеотводов выполняют из стальных многопроволочных тросов сечением не менее 35 мм2 (диаметр 7 мм).
В качестве молниеприемников можно использовать также металлические конструкции защищаемых сооружений — дымовые и другие трубы, дефлекторы (если они не выбрасывают горючие пары и газы), металлическую кровлю и другие металлоконструкции, возвышающиеся над зданием или сооружением.
Токоотводы, устраивают сечением 25—35 мм2 из стальной проволоки диаметром не менее 6 мм или стали полосовой, квадратного или иного профиля. В качестве токоотводов можно использовать металлические конструкции защищаемых зданий и сооружений (колонны, фермы, пожарные лестницы, металлические направляющие лифтов и т. д.), кроме предварительно напряженной арматуры железобетонных конструкций. Токоотводы следует прокладывать кратчайшими путями к заземлителям. Соединение токоотводов с молниеприемниками и заземлителями должно обеспечивать непрерывность электрической связи в соединяемых конструкциях, что, как правило, обеспечивается сваркой. Токоотводы нужно располагать на таком расстоянии от входов в здания, чтобы к ним не могли прикасаться люди во избежание поражения током молнии.
Заземлители молниеотводов служат для отвода тока молнии в землю, и от их правильного и качественного устройства зависит эффективная работа молниезащиты.
Конструкция заземлителя принимается в зависимости от требуемого импульсного сопротивления с учетом удельного сопротивления грунта и удобства его укладки в грунте. Для обеспечения безопасности рекомендуется ограждать заземлители или во время грозы не допускать людей к заземлителям на расстояние менее 5-6 м. Заземлители следует располагать вдали от дорог, тротуаров и т. д.
УРАГАНЫ
Ураган — это циклон, у которого давление в центре очень низкое, а ветры достигают большой и разрушительной силы. Скорость ветра может достигать 25 км/ч. Иногда ураганы на суше называют бурей, а на море — штормом, тайфуном.
Они представляют собой явление морское и наибольшие разрушения от них бывают вблизи побережья. Но они могут проникать и далеко на сушу. Ураганы могут сопровождаться сильными дождями, наводнениями, в открытом море образуют волны высотой более 10 м, штормовыми нагонами. Особой силой отличаются тропические ураганы, радиус ветров которых может превышать 300 км (рис. 22).
Ураганы — явление сезонное. Ежегодно на Земле развивается в среднем 70 тропических циклонов. Средняя продолжительность урагана около 9 дней, максимальная — 4 недели.
БУРЯ
Буря — это очень сильный ветер, приводящий к большому волнению на море и к разрушениям на суше. Буря может наблюдаться при прохождении циклона, смерча.
Скорость ветра у земной поверхности превышает 20 м/с и может достигать 100 м/с. В метеорологии применяется термин «шторм», а при скорости ветра больше 30 м/с — ураган. Кратковременные усиления ветра до скоростей 20-30 м/с называются шквалами.
смерчи
Смерч — это атмосферный вихрь, возникающий в грозовом облаке и затем распространяющийся в виде темного рукава или хобота по направлению к поверхности суши или моря
В верхней части смерч имеет воронкообразное расширение, сливающееся с облаками. Когда смерч опускается до земной поверхности, нижняя часть его тоже, иногда становится расширенной, напоминающей onрокинутую воронку. Высота смерча может достигать 800-1500 м. Воздух в смерче вращается и одновременно поднимается по спирали вверх, втягивая пыль или воду. Скорость вращения может достигать 330 м/с. В связи с тем, что внутри вихря давление уменьшается, то происходит конденсация водяного пара. При наличии пыли и воды смерч становится видимым. Диаметр смерча над морем измеряется десятками метров, над сушей — сотнями метров. Смерч возникает обычно в теплом секторе циклона и движется вместе с циклоном со скоростью 10-20 м/с. Смерч проходит путь длиной от 1 до 40-60 км. Смерч сопровождается грозой, дождем, градом и, если достигает поверхности земли, почти всегда производит большие разрушения, всасывает в себя воду и предметы, встречающиеся на его пути, поднимает их высоко вверх и переносит на большие расстояния. Предметы в несколько сотен килограммов легко поднимаются смерчем и переносятся на десятки километров. Смерч на море представляет опасность для судов.
Смерчи над сушей называются тромбами, в США их называют торнадо. Как и ураганы, смерчи опознают со спутников погоды.
Для визуальной оценки силы (скорости) ветра в баллах по его действию на наземные предметы или по волнению на море английский адмирал Ф. Бофорт в 1806 г. разработал условную шкалу, которая после изменений и уточнений в 1963 г. была принята Всемирной метеорологической организацией и широко применяется в синоптической практике.
5. КОСМИЧЕСКИЕ ОПАСНОСТИ
Космос — один из элементов, влияющих на земную жизнь. Рассмотрим некоторые опасности, угрожающие человеку из космоса.
Астероиды — это малые планеты, диаметр которых колеблется в пределах 1-1000 км.
В настоящее время известно около 300 космических тел, которые могут пересекать орбиту Земли. Всего по прогнозам астрономов в космосе существует примерно 300 тыс. астероидов и комет.
Встреча нашей планеты с такими небесными телами представляет серьезную угрозу для всей биосферы. Расчеты показывают, что удар астероида диаметром около 1 км сопровождается выделением энергии, в десятки раз превосходящей весь ядерный потенциал, имеющийся на Земле. Энергия одного удара оценивается величиной а 1023 эрг. Поэтому во многих странах ведутся работы по проблемам астероидной опасности и техногенному засорению космического пространства, направленные на прогнозирование и предотвращение столкновений массивных тел с Землей.
Основным средством борьбы с астероидами и кометами, сближающимися с Землей, является ракетно-ядер-ная технология. В зависимости от размеров опасных космических объектов (ОКО) и используемых для их обнаружения- информационных средств располагаемое на организацию противодействия время может изменяться в широких пределах от нескольких суток до нескольких лет. С учетом операций на обнаружение, уточнение траектории и характеристик ОКО, а также запуск и подлетное время средств перехвата требуемая дальность обнаружения ОКО должна составлять 150 млн. км от Земли.
Предлагается разработать систему планетарной защиты от астероидов и комет, которая основана на двух принципах защиты, а именно изменение траектории ОКО или разрушение его на несколько частей. Поэтому на первом этапе разработки системы защиты Земли от метеоритной и астероидной опасности предполагается создать службу наблюдения за их движением с таким расчетом, чтобы обнаруживать объекты размером около 1 км за год-два до его подлета к Земле. На втором этапе необходимо рассчитать его траекторию и проанализировать возможность столкновения с Землей. Если вероятность такого события велика, то необходимо принимать решение по уничтожению или изменению траектории этого небесного тела. Для этой цели предполагается использовать межконтинентальные баллистические ракеты с ядерной боеголовкой. Современный уровень космических технологий позволяет создать такие системы перехвата.
Тела размером порядка 100 м могут появиться в непосредственной близости от Земли достаточно внезапно. В этом случае избежать столкновения путем изменения траектории практически нереально. Единственная возможность предотвратить катастрофу — это разрушить тела на несколько мелких фрагментов.
Огромное влияние на земную жизнь оказывает солнечная радиация.
Солнечная радиация является мощным оздоровительным и профилактическим фактором. Распределение солнечной радиации на разных широтах служит важным показателем, характеризующим различные климатоге-ографические зоны, что учитывается в гигиенической практике при решении ряда вопросов, связанных с градостроительством и т. д.
Вся совокупность биохимических, физиологических реакций, протекающих при участии энергии света, носит название фотобиологических процессов. Фотобиологические процессы в зависимости от их функциональной роли могут быть условно разделены на три группы.
Первая группа обеспечивает синтез биологически важных соединений (например, фотосинтез).
Ко второй группе относятся фотобиологические процессы, служащие для получения информации и позволяющие ориентироваться в окружающей обстановке (зрение, фототаксис, фотопериодизм).
Третья группа — процессы, сопровождающиеся вредными для организма последствиями (например, разрушение белков, витаминов, ферментов, появление вредных мутаций, онкогенный эффект). Известны стимулирующие эффекты фотобиологических процессов (синтез пигментов, витаминов, фотостимуляция клеточного состава). Активно изучается проблема фотосенсибилизирующего эффекта. Изучение особенностей взаимодействия света с биологическими структурами создало возможность для использования лазерной техники в офтальмологии, хирургии и т. д.
Наиболее активной в биологическом отношении является ультрафиолетовая часть солнечного спектра, которая у поверхности Земли представлена потоком волн в диапазоне от 290 до 400 нм. Интенсивность УФ-излучения у поверхности Земли не всегда постоянна и зависит от географической широты местности, времени года, состояния погоды, степени прозрачности атмосферы. При облачной погоде интенсивность УФ-излучения у поверхности Земли может снижаться до 80%; за счет запыленности атмосферного воздуха эта потеря составляет от 11 до 50%.
Бактерицидное действие искусственного УФ-излучения используется также для обеззараживания питьевой воды. При этом органолептические свойства воды не изменяются, в нее не вносятся посторонние химические вещества.
Однако действие УФ-излучения на организм и окружающую среду не ограничивается лишь благоприятным влиянием. Известно, что чрезмерное солнечное облуче-ние приводит к развитию выраженной эритемы с отеком кожи и ухудшением состояния здоровья. Наиболее частым поражением глаз при воздействии УФ-лучей является фотоофтальмия. В этих случаях возникает гиперемия, конъюнктивы, появляются блефароспазм, слезотечение и светобоязнь. Подобные поражения встречаются за счет отражения лучей солнца от поверхности снега в арктических и высокогорных районах («снеговая слепота»), Известен фотосенсибилизирующий эффект у лиц, особо чувствительных к воздействию УФ-лучей, при работе с каменноугольным пеком. Повышение чувствительности к УФ-лучам наблюдается у больных со свинцовой интоксикацией, у детей, перенесших корь и т. д.
За последние годы в специальной литературе освещается вопрос о повышенной частоте возникновения рака кожи у лиц, постоянно подвергающихся избыточному солнечному облучению. В качестве аргумента приводятся сведения о большой частоте случаев рака кожи в южных районах по сравнению с распространением его на севере. Случаи рака кожи у виноградарей Бордо с преимущественным поражением кожи рук и лица связывают с постоянным и интенсивным солнечным облучением открытых частей тела.
Длинноволновая часть солнечного спектра представлена ИК-излучением. По биологической активности ИК-лучи делятся на коротковолновые с диапазоном волн от 760 до 1400 нм и длинноволновые с диапазоном волн от 1500 до 25 000 нм. ИК-излучение оказывает на организм тепловое воздействие. Чем короче длина волн, тем глубже проникновение их в ткани, но субъективное ощущение тепла и чувство жжения менее выражены. Напротив, длинноволновое ИК-излучение поглощается преимущественно поверхностными слоями кожи, где сосредоточены терморецепторы; чувство жжения при этом выражено. Наиболее неблагоприятное воздействие ИК-излуче-ния проявляется в производственных условиях, где его мощность может во много раз превышать уровень, возможный в естественных условиях. Отмечено, что у рабочих горячих цехов, стеклодувов, имеющих контакт с мощными потоками ИК-излучения, понижается электрическая чувствительность глаза, увеличивается скрытый период зрительной реакции и т. д. ИК-лучи при длительном воздействии вызывают и органические изменения органа зрения, ИК-излучение с длиной волны в 1500-1700 нм достигает роговицы и передней камеры глаза; более короткие лучи с длиной волны до 1300 нм проникают до хрусталика; в тяжелых случаях возможно развитие тепловой катаракты. Естественно, что это действие возможно лишь при отсутствии надлежащих мер защиты рабочих. Отсюда одной из важнейших задач санитарного врача на соответствующих предприятиях является предупреждение возникновения заболеваний, связанных с неблагоприятными воздействиями ИК-излучения.