Простейшим монозамещенным циклогексаном является метилциклогексан, который представляет собой органическое соединение с молекулярной формулой $CH_3C_6H_{11}$.
Рисунок 1.
Классифицируется как насыщенный углеводород, она представляет собой бесцветную жидкость со слабым запахом. Метилциклогексан используется в качестве растворителя. Он главным образом образуется при восстановлении толуола.
$CH_3C_6H_5 + 3 H_2 \to CH_3C_6H_{11}$
Метилциклогексан в смеси с толуолом, используется в качестве компонента добавки к топливам, для увеличения октанового числа бензина.
Его также применяют как компонент топлив для реактивных двигателей.
Метилциклогексан не имеет каких-либо особых областей применения, хотя она используется в качестве органического растворителя, со свойствами, близкими к соответствующим насыщенным углеводородам, таких как гептан.
Конформация метилциклогексана
Метилциклогексан, также как и все другие монозамещенные производные циклогексана, может находиться в двух различных конформациях кресла, где метильная группа или другой заместитель занимает аксиальное или экваториальное положение.
Рисунок 2.
Различие в стабильности е- и а-форм для замещенных циклогексанов легко понять, если рассмотреть соответствующие проекции Ньюмена для кольца относительно $C(1)-C(2)$ связи. Такие проекции Ньюмена для метилциклогексана приведены ниже.
Рисунок 3.
Циклогексилметанол
Циклогексилметанол представляет собой органическое соединение с формулой $C_6H_{11}CH_2OH$.
Рисунок 4.
Это кольцо циклогексана функционализированные спиртом, в частности гидроксиметильной группой. Соединение представляет собой бесцветную жидкость, хотя коммерческие образцы могут быть желтыми.
Циклогексилметанол может быть получен в две стадии, начиная с гидроформилирования циклогексена. Этот процесс также дает циклогексан, в результате гидрогенизации. Полученный циклогексанальдегид затем гидрируют с получением спирта.
Циклогексантиол
Циклогексантиол представляет собой сероорганическое соединение с формулой $C_6H_{11}SH$, которое представляет собой бесцветную жидкость с сильным запахом.
Рисунок 5.
Впервые он был получен в свободно-радикальной реакции из циклогексана с использованием сернистого углерода в качестве источника серы.
Он производится в промышленности гидрированием циклогексанона в присутствии сероводорода в присутствии катализатора сульфида металла.
Он также получается путем добавления сероводорода к циклогексену в присутствии сульфида никеля.
Особенности конформации монозамещенных циклогексанов
В аксиальных конформерах наблюдаются ван-дер-ваальсовые отталкивания между атомомами водорода заместителя и аксиальными водородами $CH_2$ групп - членов цикла в положениях (3) и (5). Эти взаимодействия называют 1,3- и 1,5- диаксиальными взаимодействиями или 1,3- и 1,5- диаксиальными отталкиваниями.
Рисунок 6.
Различия в энергиях а- и е-конформеров у любых монозамещенных циклогексанов $C_6H_{11}X$ обычно в молекулярной физику называют общим свободным конформационным энергетическим эффектом $\triangle G^\circ$ группы-заместителем $X$. Такие энергетические различия конформаций $C_6H_{11}X$ можно определить при помощи различных методов:
-
Первым таким методом является метод ЯМР спектроскопии $^1H$ и $^{13}C$. Инверсия колец приводит к инверсии и экваториальных с аксиальными атомами водорода. Этот эффект можно рассматривать как случая обмена положениями протонов. В случаях быстрых процессов обмена с константами скорости свыше $10^5$ $c^{-1}$ наблюдаемые спектры представляют собой усредненные спектры обеих этих конформаций. В случаях медленного обмена со скоростями порядка $10^1-10^2$ $c^{-1}$ спектры проявляются как наложение спектров для двух реально существующих конформерных форм. При промежуточных скоростях обмена проявляются уширенные сигналы, что является характерным для динамических равновесий в ЯМР-спектроскопии.
-
Другим аналогичным методом является ПМР-спектроскопия. При ПМР- изучении полностью дейтерированного хлорциклогексана $C_6D_{10}HCl$ при +25$^\circ$С получен усредненный синглет, при том же изучении, но при -60$^\circ$C в картине появляются два сильно уширенных синглета, а при -150$^\circ$C обнаруживаются уже два узких синглета, соответствующие индивидуальным конформациям (рис.ниже). Соотношения конформеров определяются по площадям соответствующих сигналов.
Рисунок 7. ПМР спектр декадейтеро-1-хлорциклогексана. Автор24 - интернет-биржа студенческих работ
Причем при -150$^\circ$С конформационные формы существуют в виде индивидуальных структур практически неограниченное время.
В табл. ниже представлены значения свободных конформационных энергетических эффектов для групп-заместителей с различной природой. Данные эффекты были определены при помощи $1H$ и $13C$ ЯМР- спектроскопии при температурах ниже -100$^\circ$С.
Значения свободных конформационных энергетических эффектов $\triangle G^\circ$ для групп $Х$:
Рисунок 8.
Всем галогенам свойственны низкие и за исключением фтора близкие значения эффектов $\triangle G^\circ$. Величины $\triangle G^\circ$ закономерно возрастают при переходе от первичных ко вторичным и далее к третичным алкильным группам.
Предпочтительность экваториальной ориентации трет-бутильнай группы сделало ее очень удобным репером для изучения систем с заданной конформацией. Следует, однако, отметить, что конформации нельзя представлять полностью закрепленными даже при наличии трет-бутильной или фенильной группы. Конформационная инверсия при 25$^\circ$ и выше имеет место при наличии любого заместителя, поэтому неуместно говорить о такой системе как о закрепленной в одной конформации.