Принципиальной проблемой, которая возникает при окислении спиртов до альдегидов, является то, что альдегиды очень легко подвергаются дальнейшему окислению по сравнению с исходными спиртами. По сути альдегиды являются активными органическими восстановителями. Так, при окислении первичных спиртов бихроматом натрия в серной кислоте (смесь Бекмана), альдегид, который образуется, необходимо защитить от дальнейшего окисления до карбоновой кислоты. Можно, например, удалять альдегид из реакционной смеси. И это широко применяется, так как температура кипения альдегида как правило ниже, чем температура кипения исходного спирта. Таким путем могут быть получены, в первую очередь, низкокипящие альдегиды, например, уксусный, пропионовый, изомасляный:
Рисунок 1.
Лучшие результаты можно получить, если вместо серной кислоты использовать ледяную уксусную кислоту.
Для получения высококипящих альдегидов из соответствующих первичных спиртов в качестве окислителя используют трет-бутиловый эфир хроматной кислоты:
Рисунок 2.
При окислении трет-бутилхроматом ненасыщенных спиртов (в апротонных неполярных растворителях) кратные связи не занимаются, и ненасыщенные альдегиды образуются с высокими выходами.
Достаточно селективным является метод окисления, в котором используют диоксид марганца в органическом растворителе, пентан или хлористый метилен. Например, алил- и бензил- спирты таким образом можно окислять в соответствующие альдегиды. Выходные спирты мало растворимые в неполярных растворителях, а альдегиды, которые образуются в результате окисления, значительно лучше растворимые в пентан или хлористый метилен. Поэтому карбонильные соединения переходят в слой растворителя и таким образом можно предотвратить контакт с окислителем и дальнейшем окислению:
Рисунок 3.
Проводить окисление вторичных спиртов в кетоны значительно проще, чем первичных спиртов в альдегиды. Выходы здесь выше, так как, во-первых, реакционная способность вторичных спиртов выше, чем первичных, а, во-вторых, кетоны, которые образуются значительно более стойки к действию окислителей чем альдегиды.
Окислители для окисления спиртов
Для окисления спиртов в качестве окислителей наиболее широкое применение нашли реагенты на основе переходных металлов - производные шестивалентного хрома, четырех и семи валентного марганца.
Для селективного окисления первичных спиртов до альдегидов в настоящее время лучшими реагентами считается комплекс $CrO_3$ с пиридином - $CrO_{3^.} 2C_5H_5N$ (реагент Саррета-Коллинза), также широко применяется реагент Кори - хлорхромат пиридиния $CrO_3Cl^-C_5H_5N^+H$ в хлористом метилене. Комплекс $CrO_{3^.} 2C_5H_5N$ красного цвета получается при медленном взаимодействии $CrO_{3^.}$ с пиридином при 10-15 $^\circ$С. Оранжевый хлорхромат пиридиния получают при добавлении пиридина к раствору оксида хрома (IV) в 20%-й соляной кислоте. Оба этих реагента растворимы в $CH_2Cl_2$ или $CHCl_3$:
Рисунок 4.
Эти реагенты обеспечивают очень высокие выходы альдегидов, однако хлорхромат пиридиния имеет важное преимущество в том отношении, что этот реагент не затрагивает двойную или тройную связи в исходных спиртах и поэтому особенно эффективен для получения ненасыщенных альдегидов.
Для получения $α¸β$-ненасыщенных альдегидов окислением замещенных аллильных спиртов универсальным окислителем является оксид марганца (IV) $MnO_2$
Примеры реакций спиртов с этими окислителями приведены ниже:
Рисунок 5.
Рисунок 6.
Рисунок 7.
Рисунок 8.
Каталитическое дегидрирование спиртов
Собственно говоря, окисление спиртов до карбонильных соединений сводится к отщеплению водорода от молекулы исходного спирта. Такое отщепление можно осуществить не только с помощью рассмотренных ранее методов окисления, а и используя каталитическое дегидрирование. Каталитическое дегидрирование - процесс отщепления водорода от спиртов в присутствии катализатора (медь, серебро, оксид цинка, смесь оксидов хрома и меди) как с участием кислорода, так и без него. Реакция дегидрирования в присутствии кислорода называется реакцией окислительного дегидрирования.
В качестве катализаторов чаще всего используют тонкодисперсные медь и серебро, а также оксид цинка. Каталитическое дегидрирование спиртов особенно удобно использовать для синтеза альдегидов, которые очень легко окисляются до кислот.
Вышеупомянутые катализаторы наносят в высокодисперсном состоянии на инертные носители, с развитой поверхностью, например, асбест, пемза. Равновесие реакции каталитического дегидрирования устанавливается при температуре 300-400 $^\circ$С. Чтобы предотвратить дальнейшее преобразование продуктов дегидрирования, реакционные газы необходимо быстро охлаждать. Дегидрирования очень эндотермических реакцией ($\triangle H$ = 70-86 кДж / моль). Водород, образующийся можно сжигать, если добавлять в реакционную смесь воздуха, тогда суммарная реакция будет сильно экзотермической ($\triangle H$ = -(160-180) кДж / моль). Такой процесс называется окислительное дегидрирование или аутотермичное дегидрирования. Хотя дегидрирование используется главным образом в промышленности, этот метод можно применять также и в лаборатории для препаративного синтеза.
Дегидрирование насыщения спиртов алифатического ряда происходит с хорошими выходами:
Рисунок 9.
В случае высококипящих спиртов реакцию проводят при пониженном давлении. Ненасыщенные спирты в условиях дегидрирования превращаются в соответствующие насыщенные карбонильные соединения. Гидрирование кратной $C = C$ связи происходит водородом, который образуется в процессе реакции. Чтобы предотвратить эту побочную реакцию и иметь возможность получать каталитическим дегидрированием ненасыщенные карбонильные соединения, процесс проводят в вакууме при 5-20 мм рт. ст. в присутствии паров воды. Такой метод позволяет получать целый ряд ненасыщенных карбонильных соединений:
Рисунок 10.
Применение дегидрирования спиртов
Дегидрирования спиртов является важным промышленным методом синтеза альдегидов и кетонов, например формальдегида, ацетальдегида, ацетона. Эти продуты в больших объемах добывают как дегидрированием, так и окислительным дегидрированием на медном или серебряном катализаторе:
-
дегидроциклизацией бутан-1,4-диола на медном катализаторе при 250 $^\circ$С с высокими выходами получают $γ$-бутиролактон:
Рисунок 11. -
глиоксаль синтезируют в промышленности в условиях каталитического окислительного дегидрирования этиленгликоля при 300 $^\circ$ С:
Рисунок 12. -
полиолы более сложного строения, например, пентаэритрит, сахара в условиях каталитического дегидрирования.