Справочник от Автор24
Найди автора для помощи в учебе
Найти автора
+2

Окисление вторичных спиртов

Общим методом получения кетонов из вторичных спиртов является окисление их оксидом хрома (VI) в воде или разведенной уксусной кислоте. Хромовый ангидрид в ацетоне и дихроматы пиридиния можно использовать для окисления ненасыщенных вторичных спиртов, не нарушая двойных и тройных связей:



Рисунок 1.

Вторичные спирты сложного строения, содержащие чувствительные к действию окислителей группы, можно с хорошими выходами окиснюваты в соответствующие кетонов, используя метод Оппенауера. В системе, содержащей вторичный спирт и кетоны (как правило ацетон) в присутствии алкоголятов алюминия устанавливается равновесие:



Рисунок 2.

Если в систему ввести большой избыток ацетона, то происходит смещение равновесия в сторону образования кетонов из вторичного спирта, то есть происходит окисление спирта. После установления равновесия реакционную смесь обрабатывают 30% -ной серной кислотой, отгоняют избыток ацетона и изопропилового спирта, и отделяют продукт окисления - кетон. Роль алкоголята алюминия сводится к образованию комплекса с ацетоном, то есть он действует как кислота Льюиса, увеличивая частичный положительный заряд на атоме углерода карбонильной группы. Благодаря этому в реакционной комплексе, который содержит спирт, легче происходит гидридный переход от атома углерода, связанного с гидроксильной группой, что приводит к превращению исходного спирта в кетоны:

«Окисление вторичных спиртов» 👇
Помощь автора по теме работы
Найти автора
Скидки на первый заказ
Все промокоды
Собрали более 72 000 авторов учебных работ
Найти автора



Рисунок 3.

Как акцептор водорода вместо ацетона (избыток 50-200 моль) иногда используют циклогексанон (избыток 20 моль). Катализаторами могут быть трет-бутилат или изопропилат алюминия (1-3 моль на моль исходного спирта). Растворитель в котором проводят реакцию - бензол или толуол.

Окисление ароматических спиртов

Окисление фенолов является сложным, многостадийным процессом, механизм которого мало изучен. Сам фенол окислением производными шестивалентного хрома, четырех и семи валентного марганца в серной кислоте образует с удовлетворительным выходом пара-хинон.



Рисунок 4.

Вторичную гидроксильную группу ароматических спиртов можно окислять в карбонильную и при наличии в молекуле других заместителей, например, первичной спиртовой группы. Для этого, первичную гидроксильную группу защищают превращением в трифенилметиловий эфир (третичная защита) обработкой диола трифенил-хлорометаном в присутствии основания (пиридина) при комнатной температуре. Эфир, который образуеться, устойчивый в нейтральной и щелочной среде, а незащищенную вторичную спиртовую группу можно окислять диоксидом марганца. Третичную защиту снимают при нагревании с разбавленной уксусной или соляной кислотой:



Рисунок 5.

Окисление $\alpha$-оксикетонов (ацилоинов) в соответствующие дикарбонильные соединения легко происходит при воздействии солей меди (II). Например, бензоин окисляется до бензила при действии сульфата меди в пиридине:



Рисунок 6.

Окислители для окисления вторичных спиртов

Для окисления вторичных спиртов в качестве окислителей также, как и для первичных спиртов, применяют реагенты на основе переходных металлов - производные шестивалентного хрома, четырех и семи валентного марганца.

Часто для окисления вторичных спиртов применяют комплекс хромового ангидрида с пиридином - реагент Саррета-Коллинза, который показал себя очень эффективным в таких реакциях и дает выходы, приближающиеся к количественным:



Рисунок 7.

В реакциях окисления вторичных спиртов в кетоны в качестве окислителя также применяют реагент Джонса - раствор со строго рассчитанным количеством $CrO_3$ в водной серной кислоте. При этом в ходе реакции с участием реагента Джонса спирты, растворенные в ацетоне, как бы «титруются» этим реагентом при 0-25 $^\circ$С, т.е. реагент Джонса покапельно добавляется в реакционную среду. Преимущество этого метода состоит в том, что окисляемые спирты находятся в растворенном состоянии в ацетоне, и в ходе реакции образующаяся реакционная смесь из-за того, что соли хрома в ацетоне не растворяются, разделяется на две фазы. В нижней фазе содержаться востановленые соли хрома (III). В верхней фазе содержаться окисленные продукты реакции. Другим важным достоинствос реагента Джонса является то, что вторичный спирт, содержащий двойную или тройную связи, быстро окисляется до кетона без затрагивания ненасыщенных связей:



Рисунок 8.



Рисунок 9.



Рисунок 10.



Рисунок 11.



Рисунок 12.

Расщепление α-гликолей

При воздействии на $\alpha$-гликоли специфических окислителей - йодатной кислоты или тетраацетата свинца происходит расщепление $С-С$ связи, и, в зависимости от строения исходного гликоля, образуются аледегиды или кетоны:



Рисунок 13.

Механизм этой реакции полностью еще не выяснен. Как правило, цис-гликоли расщепляются значительно быстрее, чем транс- гликоли. Йодатная кислота, в отличие от тетраацетата свинца, растворима в воде и поэтому может быть использована в качестве реагента для расщепления нерастворимых в органических растворителях сахаров. Она используется для определения размеров колец гликозидов.

Окисление йодатной кислоты $\alpha$-гликолей происходит в водном растворе при комнатной температуре в течение 4-20 часов.

При окислении тетраацетатом свинца реакцию проводят при комнатной температуре или при нагревании, и как растворитель применяют бензол, толуол или уксусную кислоту. Отличительной особенностью обоих методов является возможность расщепления $С-С$ связи в мягких условиях и обеспечения достаточно высоких выходов карбонильных соединений (50-95%):



Рисунок 14.

Дата последнего обновления статьи: 20.02.2025
Не знаешь, как приступить к заданию?
За 5 минут найдем эксперта и проконсультируем по заданию. Переходи в бота и получи скидку 500 ₽ на первый заказ.
Запустить бота
Нужна помощь с заданием?

Эксперт возьмёт заказ за 5 мин, 400 000 проверенных авторов помогут сдать работу в срок. Гарантия 20 дней, поможем начать и проконсультируем в Telegram-боте Автор24.

Перейти в Telegram Bot