Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Основные формулы термодинамики

В термодинамике изучают самые общие законы и физические процессы преобразований внутренней энергии. При этом считается, что любое материальное тело имеет тепловую энергию U, которая зависит от его температур.

Перед тем, как рассмотреть основные термодинамические формулы необходимо дать определение термодинамике.

Определение 1

Термодинамика - это обширный раздел физики, который исследует и описывает процессы, происходящие в системах, а также их состояния.

Указанное научное направление опирается на обобщенные факты, которые были получены опытным путем. Происходящие в термодинамических концепциях явления описываются посредством использования макроскопических величин.

В их список входят такие параметры, как:

  • давление;
  • температура;
  • концентрация;
  • энергия;
  • объем.

К отдельным молекулам данные параметры неприменимы, а сводятся к детальному описанию системы в общем ее виде. Много решений, которые основаны на термодинамических законах, можно встретить в сфере электроэнергетики и тепловой техники. Что и свидетельствует о понимании фазовых переходов, химических процессов и явлений переноса. В некотором роде термодинамика тесно “сотрудничает” с квантовой динамикой.

Уравнение идеального газа в термодинамике

Работа в термодинамике. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Работа в термодинамике. Автор24 — интернет-биржа студенческих работ

Определение 2

Идеальный газ – это некая идеализация, такая же, как и материальная точка.

«Основные формулы термодинамики» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Молекулы такого элемента являются материальными точками, а соударения частиц – абсолютно упругие и постоянные. В задачах по термодинамике реальные газы зачастую принимаются за идеальные. Так гораздо легче составлять формулы, и не нужно иметь дела с огромным количеством новых величин в уравнениях.

Итак, молекулы идеального газа движутся, а вот чтобы узнать с какой скоростью и массой, необходимо использовать уравнение состояния идеального газа, или формулу Клапейрона-Менделеева: PV=mMRT. Здесь m – масса исследуемого газа, M – его изначальная молекулярная масса, R – универсальная постоянная, равная 8,3144598 Дж/(моль*кг).

В этом аспекте массу идеального газа также можно вычислить, как произведение объема и плотности m=pV. Существует некая связь между средней кинетической энергией E и давлением газа. Эта взаимосвязь называется в физике основным уравнением молекулярно-кинетической теории и имеет вид: p=23nE, где n – концентрация движущихся молекул по отношению к общему объему, E – коэффициент средней кинетической энергии.

Первое начало термодинамики. Формулы для изопроцессов

Уравнение состояния идеального газа. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Уравнение состояния идеального газа. Автор24 — интернет-биржа студенческих работ

Первый термодинамический закон гласит: количество внутренней теплоты, переданное газу, идёт только на изменение общей энергии газа U и на совершение веществом работы A. Формула первого начала термодинамики записывается так: Q=ΔU+A.

как известно, с газом в системе всегда что-то происходит, ведь его можно сжать или нагреть. В данном случае необходимо рассмотреть такие процессы, которые протекают при одном стабильном параметре. Первое начало термодинамики в изотермическом случае, который протекает при постоянной температуре, задействует закон Бойля-Мариотта.

В результате изотермического процесса давление газа обратно пропорционально его изначальному объёму: Q=A.

Изохорный – наблюдается при постоянном объеме. Для этого явление применим закон Шарля, согласно которому, давление прямо пропорционально общей температуре. В изохорном процессе все подведенное к газу тепло идет на изменение его внутренней энергии и записывается в таком виде: Q=ΔA.

Изобарный процесс – происходит при постоянном давлении. Закон Гей-Люссака предполагает, что при неизменном давлении идеального газа его начальный объём прямо пропорционален итоговой температуре. При изобарном процессе тепло идет на совершение газом работы и на изменение внутреннего энергетического потенциала: Q=ΔU+pΔV.

Формула теплоемкости и главная формула КПД в термодинамике

Количество теплоты. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Количество теплоты. Автор24 — интернет-биржа студенческих работ

Замечание 1

Удельная теплоемкость в термодинамической системе всегда равна количеству теплоты, которое выделяется для нагревания одного килограмма действующего вещества на один градус Цельсия.

Уравнение теплоемкости записывается таким образом: c=QmΔt. Помимо указанного параметра, существует и молярная теплоемкость, которая работает при постоянном объеме и давлении.

Ее действия видно в следующей формуле: Cv=i2R где i – количество степеней свободы молекул газа.

Тепловая машина, в самом простейшем случае, состоит из холодильника, нагревателя и рабочего материального тела. Нагреватель изначально сообщает тепло физическому веществу и совершает определенную работу, а затем постепенно охлаждается холодильником, и все повторяется по кругу. Типичным примером тепловой машины выступает двигатель внутреннего сгорания.

Коэффициент полезного действия теплового устройства вычисляется по формуле: n=QhQxQh.

При изучении основ и уравнений термодинамики следует понять, что на сегодняшний день существует два метода описания физических процессов, происходящих в макроскопических материальных телах: статистический и термодинамический.

Методы термодинамики и ее формулы позволяет раскрыть и описать смысл экспериментальных закономерностей в виде закона Менделеева-Клапейрона. Важно понять, что в термодинамических концепциях, в отличие от систем молекулярной физики, не изучаются конкретные взаимодействия, происходящие с определенными молекулами или атомами, а рассматривается постоянные взаимопревращения и связь разнообразных видов теплоты, энергии и работы.

Уравнение состояния и его функции

Термодинамические уравнения состояния. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Термодинамические уравнения состояния. Автор24 — интернет-биржа студенческих работ

При исследовании макросостояний применяются функции состояния, которые предполагают показатель, демонстрирующий определённые состояния термодинамического равновесия, независящий от предыстории концепции и метода её перехода в абсолютное состояние.

Основными функциями состояния при грамотном построении термодинамики являются:

  • внутренняя энергия;
  • энтропия;
  • температура;
  • термодинамические потенциалы.

Однако функции состояния в термодинамики не являются полностью независимыми, и для однородной системы любой термодинамический принцип может быть записан как выражение двух самостоятельных переменных. Такие функциональные взаимосвязи называются уравнениями общего состояния.

На сегодняшний день различают такие виды уравнений:

  • термическое уравнение состояние - определяющее связь между давлением, температурой и объёмом;
  • калорическое уравнение - выражающее внутренний энергетический потенциал, как функцию от объёма и температуры;
  • каноническое уравнение состояние - записываемое в качестве термодинамического потенциала в соответствующих переменных.

Знание уравнения состояния очень важно для использования на практике общих принципов термодинамики. Для каждой конкретной термодинамической концепции такие выражения определяются из опыта или способами статистической механики, и в пределах термодинамики оно считается заданным при изначальном определении системы.

Дата последнего обновления статьи: 10.06.2024
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot

Изучаешь тему "Основные формулы термодинамики"? Могу объяснить сложные моменты или помочь составить план для домашнего задания!

AI Assistant