Изоклина
кривая, в каждой точке которой наклон поля направлений один и тот же
функция, определенная на отрезке [a, b], которую при некотором разбиении a = x0 < x1 < · · · < xn = b можно на каждом интервале (xk, xk+1) представить в виде полинома (обычно требуют еще непрерывность функции и нескольких ее производных в точках xk)
В работе проанализированы сглаживающие и интерполяционные базисные сплайны, а также показаны возможности применения спектральных свойств базисных сплайнов для цифровой обработки сигналов. При этом учитывается тот факт, что базисные сплайны представляют собой финитные, кусочно-полиномиальные функции, определенные на компактных носителях.
Рассмотрено применение теории полулокальных сглаживающих сплайнов или S -сплайнов высоких степеней к решению задач теории упругости. S -сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные коэффициенты — методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-й степени класса С4 при решении бигармонического уравнения на круге.
кривая, в каждой точке которой наклон поля направлений один и тот же
аксиальный вектор
коническая поверхность, направляющая которой — многоугольник
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве