Испытание
термин классической теории вероятностей, при аксиоматическом подходе определяемый как любое разбиение пространства элементарных событий на попарно несовместимые случайные события, которые называются исходами испытания
произвольное открытое множество, содержащее данную точку a ∈ R
Для некоторого класса отображений, более общих, чем локально квазиконформные, получен аналог хорошо известной теоремы Лаврентьева Зорича о глобальном гомеоморфизме. В частности, показано, что локальные гомеоморфизмы класса Соболева W1,n loc, n ? 3, внешняя дилатация KO(x, f) которых локально суммируема в Rn в степени n?1, инъективны в Rn, как только Kn?1 O (x, f) ? Q(x) почти всюду при некоторой измеримой функции Q(x), имеющей конечное среднее колебание (FMO) в окрестности бесконечно удаленной точки, либо удовлетворяющей условию расходимости интеграла специального вида. Упомянутый выше результат верен также и для некоторого более широкого класса отображений, удовлетворяющих определенным геометрическим условиям.
термин классической теории вероятностей, при аксиоматическом подходе определяемый как любое разбиение пространства элементарных событий на попарно несовместимые случайные события, которые называются исходами испытания
выборочные квантили порядков k/100, где k = 1, 2, ... , 99
интеграл вероятностей
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве