Аликвотная дробь
дробь вида 1 n, где n > 1 — натуральное число
произвольное открытое множество, содержащее данную точку a ∈ R
Для некоторого класса отображений, более общих, чем локально квазиконформные, получен аналог хорошо известной теоремы Лаврентьева Зорича о глобальном гомеоморфизме. В частности, показано, что локальные гомеоморфизмы класса Соболева W1,n loc, n ? 3, внешняя дилатация KO(x, f) которых локально суммируема в Rn в степени n?1, инъективны в Rn, как только Kn?1 O (x, f) ? Q(x) почти всюду при некоторой измеримой функции Q(x), имеющей конечное среднее колебание (FMO) в окрестности бесконечно удаленной точки, либо удовлетворяющей условию расходимости интеграла специального вида. Упомянутый выше результат верен также и для некоторого более широкого класса отображений, удовлетворяющих определенным геометрическим условиям.
дробь вида 1 n, где n > 1 — натуральное число
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
репер, однозначно связанный с исследуемой фигурой или ее точкой
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне