Нуль
число, обладающее свойствами: a ± 0 = a, a ⋅ 0 = 0; деление на нуль невозможно
краткая запись системы уравнений, эквивалентных одному уравнению, составленному из матриц; решение матричного уравнения A∙X = B есть X = A—1 ∙ B, где A — матрица системы; X, B — матрицы-столбцы, составленные из неизвестных и свободных членов соответственно; A−1 — матрица, обратная A
Матричный способ решения систем линейных уравнений
Рассмотрим систему линейных уравнений следующего вида...
Такую запись часто называют матричным уравнением....
Записать систему в матричном виде....
матричным способом....
Имея матричное уравнение $A\cdot X=B$, можно выразить из него $X$ следующим способом:
$A^{-1} \cdot A
В работе рассматриваются матричные уравнения, для которых находятся условия их разрешимости. Вопросы, связанные с матричными уравнениями изложены в прилагаемом списке литературы.
Матричная запись системы обыкновенных дифференциальных уравнений (СОДУ) с постоянными коэффициентами...
Теперь на основе правила умножения матриц данную СОДУ можно записать в виде матричного уравнения $\frac...
\]
Теперь матричному уравнению данной СОДУ можно придать вид:
$\left(\begin{array}{cccc} {a_{11}...
Это уравнение называется характеристическим....
Корни характеристического уравнения: $k_{1} =1$, $k_{2} =9$.
число, обладающее свойствами: a ± 0 = a, a ⋅ 0 = 0; деление на нуль невозможно
процесс составления или вычисления суммы
интеграл вероятностей
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве