Каноническое отображение
такое отображение множества в его фактормножество, что образом любого элемента является класс эквивалентности, содержащий этот элемент
непрерывно дифференцируемая функция, определенная на отрезке [a, b], которая при некотором разбиении a = x0 < x1 < · · · < xn = b окажется квадратичной функцией на каждом интервале (xk, xk+1)
Получена совокупность представлений вейвлета Мейера, при построении которой функция, являющаяся аргументом синуса, состоит из квадратичных В-сплайнов. Выбор параметров сплайнов определяется минимизацией константы неопределенности вейвлета Мейера.
Настоящая работа посвящена использованию квадратичного сплайна с минимальной производной для приближения функции в задачах интерполяции и аппроксимации. Строится гладкий сплайн на сетке с равномерным шагом таким образом, чтобы норма его производной была минимальной. Узлы сплайна и узлы интерполяции совпадают. Такой подход позволяет получить сплайн по заданным на сетке значениям функции, обходясь без дополнительного задания значения производной функции в начальной точке, так как она находится из условия минимума нормы производной сплайна в L2.
такое отображение множества в его фактормножество, что образом любого элемента является класс эквивалентности, содержащий этот элемент
1. если функция непрерывна в ограниченной замкнутой области, то она равномерно непрерывна в этой области; 2. множество, состоящее из всех подмножеств данного непустого множества M (булеан), не эквивалентно ни самому M, ни его подмножеству
дифференциал функции нескольких переменных
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве