Геометрический ряд
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
точка, лежащая в плоскости этой кривой и обладающая тем свойством, что отношение расстояний любой точки кривой до фокуса и до соответствующей директрисы есть постоянная величина, равная эксцентриситету этой кривой
на одинаковом расстоянии от некой точки $F$, называемой фокусом и не лежащей ни на этой кривой, ни на...
Термин “эксцентриситет” также используется для гипербол и эллипсов....
Основные термины из канонического уравнения параболы
Точка $F$ называется фокусом параболы, а прямая...
А парабола, которая имеет минус перед второй частью уравнения ($y^2 = - 2px$), развёрнута на 180° по...
Парабола является частным случаем кривой 2-ого порядка, соответственно, в общем виде уравнение для параболы
Из геометрических соображений и определений директрис и фокусов получены канонические уравнения кривых второго порядка - эллипс, гипербола, парабола. Предложенный подход позволяет вывести все основные геометрические свойства линий. Подход значительно упрощает изложение материала, связанного с кривыми второго порядка и носит общий характер. Теория дает возможность рассмотреть, кроме ожидаемых канонических уравнений, частные (вырожденные) случаи, тем самым, провести полную классификацию кривых второго порядка.
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
кривая, в каждой точке которой наклон поля направлений один и тот же
эрмитова матрица
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве