Каноническое отображение
такое отображение множества в его фактормножество, что образом любого элемента является класс эквивалентности, содержащий этот элемент
пространство, элементами которого являются классы эквивалентности данного топологического пространства, а открытыми считаются те и только те множества, прообразы которых в каноническом отображении являются открытыми
В работе дается характеризация R-факторизуемости G-пространств, доказывается равносильность R-факторизуемости и свойства ω-U для G-пространств с d-открытым действием ω-узких групп. Показано, что R-факторизуемость характеризует те компактные факторпространства, которые являются факторпространствами ω-узких групп. Вводятся понятия mи M-факторизуемых G-пространств, обобщающих соответствующие понятия для топологических групп.
Проведено исследование, является ли факторпространство компактной линейной группы топологическим и гомологическим многообразием. Рассмотрен случай бесконечной группы с коммутативной связной компонентой. Приведен метод сведения произвольного представления к представлению с неразложимым 2-устойчивым множеством весов без нулей. Получен явный критерий отдельно для одномерной группы и для группы большей размерности
такое отображение множества в его фактормножество, что образом любого элемента является класс эквивалентности, содержащий этот элемент
порождающая грамматика
процесс составления или вычисления суммы
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве