На этой странице вы узнаете, как выглядят формулы для расчёта полной и боковой площади поверхности параллелепипеда. Также на страницу добавлен онлайн-калькулятор для расчёта площади прямоугольного параллелепипеда.
Параллелепипед является разновидностью призмы, основания которой представляют собой параллелограммы. Также параллелепипедами называют призмы, в основании которых лежат многогранники, а все грани являются параллелограммами.
Наиболее знакомый всем вид параллелепипеда — это прямоугольный параллелепипед. Все его грани являются прямоугольниками.
Для расчёта полной площади прямоугольного параллелепипеда введите значение сторон и высоты в поля для ввода.
Площадь поверхности параллелепипеда через стороны
Для прямоугольного параллелепипеда площадь поверхности определяется по формуле:
$S = 2 \cdot (a \cdot b + b \cdot h + a \cdot h)$, здесь
$a, b$ — стороны основания параллелепипеда;
$h$ — высота параллелепипеда.
Разберём пример на нахождение полной площади параллелепипеда.
Задача
Стороны основания прямоугольного параллелепипеда равны $a = 3$ см и $b = 7$ см, а его высота $h$ равна $4$ см. Чему равна полная площадь поверхности параллелепипеда?
Решение:
Воспользуемся вышеприведённой формулой:
$S = 2 \cdot (3 \cdot 4 + 7 \cdot 4 + 3 \cdot 7) = 122$ кв. см.
Результаты совпадают с решением онлайн-калькулятора, а значит, ответ найден верно.
Также используя следующий онлайн-калькулятор, вы сможете рассчитать площадь боковой поверхности прямоугольного параллелепипеда.
Площадь боковой поверхности прямоугольного параллелепипеда через стороны
Площадь боковой поверхности прямоугольного параллелепипеда определяется по формуле:
$S = 2 \cdot h \cdot (a + b)$, где
$h$ — длина ребра параллелепипеда;
$a, b$ — стороны основания.
Рассчитаем для примера площадь боковой поверхности для параллелепипеда из предыдущей задачи.
Задача
$a = 3$ см, $b = 7$ см, а высота $h = 4$ см. Чему равна боковая площадь поверхности прямоугольного параллелепипеда?
Решение:
$S_б = 2 \cdot 4 \cdot (3 + 7) = 80$ кв. см.
Решение соответствует решению, полученному с помощью онлайн-калькулятора, а значит, ответ правильный.