Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Площадь цилиндра

На этой странице вы узнаете, как посчитать площадь цилиндра: приведены формулы для расчёта площади боковой поверхности цилиндра и для полной площади поверхности цилиндра.

Также на страницу добавлены онлайн-калькуляторы для быстрых расчётов.

Определение 1

В простейшем случае цилиндр — это геометрическое тело, полученное путём вращения прямоугольника по кругу вокруг какой-либо из его сторон. Основаниями такого цилиндра являются окружности.

Для того чтобы воспользоваться формулами для вычисления площади полной поверхности цилиндра, необходимо знать радиус или диаметр окружности, лежащей в основании.

Ниже приведены онлайн-калькуляторы для расчёта полной площади цилиндра или только его боковой поверхности.

Для их использования введите заданные величины в поля для ввода.

Полная площадь цилиндра через радиус

Полная площадь цилиндра через радиус

Полную площадь цилиндра через радиус определяют через сумму площадей двух его оснований и боковой поверхности:

S = 2 \cdot π \cdot R \cdot h + 2 \cdot π \cdot R^2 = 2 \cdot π \cdot R (h + R), где

R — радиус основания цилиндра;

h — его высота.

Пример 1

Задача

Рассчитайте объём цилиндра с радиусом основания, равным 5 см и высотой, равной 7 см.

Решение:

Воспользуемся формулой для расчёта площади поверхности цилиндра через радиус:

S = 2 \cdot 3,14 \cdot 5 \cdot (5 + 7) = 376,9 кв. см.

Проверим ответ с помощью онлайн-калькулятора — он совпадает, значит, расчёты проведены верно.

Ответ: 376,9.

Полная площадь цилиндра через диаметр

Полная площадь цилиндра через диаметр

Через диаметр полная площадь цилиндра определяется по формуле:

S = π \cdot d \cdot (h + \frac{d} {2}), здесь

d — диаметр основания цилиндра;

h — высота цилиндра.

Площадь боковой поверхности цилиндра через радиус

Площадь боковой поверхности цилиндра через радиус

Чтобы определить площадь боковой поверхности цилиндра через радиус, применяют формулу:

S = 2 \cdot π \cdot R \cdot h, где

R — радиус основания цилиндра;

h — высота цилиндра.

Пример 2

Задача

Радиус цилиндра R равен 7 см, а высота 10 см. Чему равна площадь его боковой поверхности?

Решение:

S = 2 \cdot 3,14 \cdot 7 \cdot 10 = 439,8 кв. см.

Ответ: 439,8.

Площадь боковой поверхности цилиндра через диаметр

Площадь боковой поверхности цилиндра через диаметр

Через диаметр площадь боковой поверхности определяется следующим образом:

S = π \cdot d \cdot h, здесь

d — диаметр основания цилиндра;

h — высота цилиндра.

Дата написания статьи: 10.06.2019
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot
AI Assistant