Нормаль — это прямая, которая образует с касательной к графику функции угол в $90°$.
Рисунок 1. Нормальный перпендикуляр к графику касательной. Автор24 — интернет-биржа студенческих работ
В связи с тем, что нормаль перпендикулярна к касательной, её угловой коэффициент будет величиной, обратной к угловому коэффициенту касательной:
$k_{норм}=- \frac{1}{k_{к}}= -1 \frac{1}{f’(x_0)}$.
Пользуясь полученным выводом, запишем уравнение нормали к графику функции:
$y – y_0 = - \frac{1}{f’(x_0)} \cdot (x – x_0) \left(1\right) $, здесь $x_0$ и $y_0$ — координаты точки для которой строится искомая линия, при этом производная в этой точке $f’(x_0) ≠ 0$.
Порядок действий при поиске уравнения нормальной прямой если задана координата $x_0$:
- Вычисляется, чему равен нулевой игрек $y(x_0)$ для функции.
- Затем нужно определить производную.
- Нужно высчитать затем, чему равен $f’(x)$ в точке $x_0$, найденное значение — коэффициент касательной.
- Все найденные значения подставляются в формулу $(1)$.
Напомним также как выглядит само уравнение касательной:
$y – y_0 = f’(x_0) \cdot (x – x_0)$.
Найдите уравнение нормали для функции $y=x^2$ в точке $x_0=2$.
Решение:
Производная данной функции составит $y’(x) = 2x$, затем найдём, чему равен наш подопытный кролик-функция в заданной точке $y_0= x^2 = 2^2 = 4$.
Теперь нужно высчитать производную функции в точке $x_0$: $y’(2) = 2 x = 2 \cdot 2= 4$.
Все полученные значения расставляем по своим местам в формулу $(1)$:
$y-4=-\frac{1}{4} \cdot (x – 2)$
Уравнение нормали найдено.