Уравнения высших степеней — это уравнения, в которых старшая степень при переменной больше либо равна трём. На данный момент не существует какой-либо единой схемы для решения уравнений высших степеней.
Наиболее известными схемами для решения являются:
- Формула Кардано, он подходит только для уравнений 3-ьей степени;
- Метод Феррари для уравнений 4-ой степени;
- Теорема Виета для степени больше двух;
- Теорема Безу;
- Схема Горнера.
Ниже рассмотрены основные методы решения уравнений высших степеней с целыми и рациональными коэффициентами, справедливые для разных степеней.
Теорема Виета
Рассмотрим уравнение вида $ax^3+bx^2+cx+d=0$.
Данное уравнение обладает тремя корнями и для того чтобы его решить в общем виде, необходимо решить следующую систему:
$\begin{cases} x_1 + x_2+x_3=-\frac{b}{a} \\ x_1x_2 + x_2x_3+x_3x_1=\frac{c}{a} \\ x_1x_2x_3=-\frac{d}{a} \\ \end{cases}$
Иначе эти системы уравнений также называют формулами Виета.
Решите уравнение: $x^3+x^2-4x-4=0$.
Решение:
Составим систему уравнений:
$\begin{cases} x_1+ x_2+x_3=-\frac{1}{1} \\ x_1 \cdot x_2 + x_2 \cdot x_3 + x_1 \cdot x_3=-\frac{4}{1}=-4 \\ x_1 \cdot x_2 \cdot x_3= -\frac{4}{1}\\ \end{cases}$
Решив её, получим следующие корни:
$\begin{cases} x_1=-2 \\ x_2=2 \\ x_3=-1 \\ \end{cases}$
Теорема Безу
Суть этой теоремы в том, что если уравнение вида $a_0x^n + a_1x^{n-1}+a_2x^{n-2]}+...+a_{n-1}x+a_n=0$ с ненулевым свободным членом имеет некий корень $α$, принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Алгоритм при решении уравнения с использованием теоремы Безу следующий:
- Найти и выписать все делители свободного члена.
- Проверять эти делители до тех пор, пока не будет найден хотя бы один, являющийся корнем уравнения.
- Разделить всё уравнение на $(x-α)$ и записать само уравнение как произведение $(x-α)$ и результата выполненного деления.
- Решить полученное после разложения уравнение.
Решите: $x^3+4x^2+x-6=0$
Решение:
Делители члена не при переменной: $±1;±2;±3;±6$
Подставим $1$ в корень уравнения и получим, что наше равенство выполняется:
$1^3+4 \cdot 1^2+1-6=0$
Следовательно, $x_1=1$ — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком:
Рисунок 1. Схема деления многочлена столбиком. Автор24 — интернет-биржа студенческих работ
После этого исходное уравнение можно записать разложив на множители:
$(x-1)(x^2+5x+6)=0$
Решаем полученное квадратное уравнение и получаем ещё 2 корня: $x_{2,3}=-3;-2$.
Схема Горнера
Схема Горнера состоит в том, чтобы также сначала найти какой-либо корень уравнения вида $a_0x^n + a_1x^{n-1}+a_2x^{n-2]}+...+a_{n-1}x+a_n=0$ через делители свободного члена.
После этого составляется специальная таблица с результатами деления на $(x-α)$, в которой каждый член зависим от предыдущего. Коэффициенты из данной таблицы используются как коэффициенты в полученном от деления частного многочлене, они вычисляются по формулам:
$b_0=a_0; b_1=αb_0+a_1; b_2=αb_1+a_2...b_{n-1}= αb_{n-2}+a_{n-1};b_n=αb_{n-1}+a_n$.
Рисунок 2. Таблица для вычисления коэффициентов по схеме Горнера. Автор24 — интернет-биржа студенческих работ
Решить: $x^3+4x^2+x-6=0$.
Решение:
Делители свободного члена — $±1;±2;±3;±6$
Запишем таблицу со коэффициентами:
Рисунок 3. Схема Горнера: пример. Автор24 — интернет-биржа студенческих работ
Отсюда получаем, что многочлен, полученный от деления на $(x-α)$ при $α=1$, равен $x^2+5x+6$.Получается, что исходное уравнение принимает вид:
$(x-1) \cdot ( x^2+5x+6)=0$.
Корни же второго многочлена будут $x_{2,3}=-2;-3$.
Метод одновременного подбора по коэффициенту при старшей степени и при свободном члене
Данный метод основан на следующем условии:
Несократимая дробь $\frac{p}{q}$ будет корнем уравнения, если числитель этой дроби является делителем свободного члена, а знаменатель — делителем коэффициента, стоящего при члене со старшей степенью.
Алгоритм этого метода:
- Поиск делителей свободного члена.
- Поиск делителей коэффициента, стоящего при члене со старшей степенью.
- Составление дробей и подбор решения.
Решите: $2x^4+17x^3-17x^2-8x+6=0$.
Решение:
Делители свободного члена: $±1; ±2; ±3; ±6$.
Делители коэффициента при старшем члене: $1; 2$.
Следовательно, как корни нужно проверить следующие значения: $1;-1;2;-2;3;-3;6;-6;\frac{1}{2}; -\frac{1}{2}; \frac{3}{2}; -\frac{3}{2}$.
Подставив эти числа в уравнения, получим, что корнями уравнения являются $x_1=1;x_2= \frac{1}{2}$.
Это значит, что многочлен можно разделить на $2(x-1)(x-\frac{1}{2})=2x^2-3x+1$. При выполнении деления получаем частное $x^2+10x+6$.
Приравниваем этот многочлен к нулю и находим его корни через дискриминант, они равны $x_{3,4}=-5±\sqrt{19}$.