Разместить заказ
Вы будете перенаправлены на Автор24

Таблица степеней

Существует множество таблиц значений степеней натуральных чисел. Привести их все не представляется возможным. Здесь мы приведем примеры некоторых таких таблиц и задачи на нахождение значений по таким таблицам.

Таблица степеней первых натуральных чисел

Приведем для начала таблицу для нахождения степеней натуральных чисел от $2$ до $12$ по степеням от $1$ до $10$ (таблица 1). Отметим, что мы не приводим степени числа $1$, потому что единица в любой степени будет равняться самой себе.

Таблица 1

Находить по этой таблице значения надо следующим образом: В первом столбце находим число, степень которого нас интересует. Запоминаем номер этой строчки. Затем в первой сроке находим показатель степени и запоминаем найденный столбец. Пересечение найденной строки и столбца и даст нам ответ.

Пример 1

Найти $8^7$

Решение.

Находим в первом столбце число $8$: получаем 8-ю строчку.

Находим в первой строке число $7$: получаем 8-й столбец.

Видим, что на их пересечении находится число $2097152$. Следовательно

$8^7=2097152$

Таблицы степеней натуральных чисел от $1$ до $100$

Также довольно популярны таблицы степеней от $1$ до $100$. Все их привести невозможно, поэтому мы здесь приведем для примера такие таблицы для квадратов и кубов таких натуральных чисел (таблица 2 и таблица 3).

Таблица 2

Таблица 3

Готовые работы на аналогичную тему

Эти таблицы напоминают всем известные таблицы умножения, поэтому, мы думаем, читателю не составит труда использование данных таблиц.

Пример 2

Найти

а) $76^2$.

б) $28^3$

Решение.

а) Данное значение находим в таблице $2$ в $8$ табличке:

$76^2=5776$

б) Данное значение находим в таблице $3$ в $3$ табличке:

$28^3=21952$

Таблица квадратов натуральных чисел от $10$ до $99$

Еще одной пользующейся популярностью таблицей является таблица квадратов чисел от $10$ до $99$ (таблица 4), то есть всех десятичных чисел.

Таблица 4

Находить по этой таблице значения надо следующим образом: В первом столбце находим число десятков интересующего нас числа. Запоминаем номер этой строчки. Затем в первой сроке находим число единиц интересующего числа и запоминаем найденный столбец. Пересечение найденной строки и столбца и даст нам ответ.

Пример 3

Найти $37^2$

Решение.

Находим в первом столбце число $3$: получаем 4-ю строчку.

Находим в первой строке число $7$: получаем 8-й столбец.

Видим, что на их пересечении находится число $1369$. Следовательно

$37^2=1369$

Сообщество экспертов Автор24

Автор этой статьи

Автор статьи

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис