Разместить заказ
Вы будете перенаправлены на Автор24

Статистические оценки параметров распределения

Все предметы / Математика / Статистические оценки параметров распределения

Распределения в математической статистике характеризуется многими статистическими параметрами. Оценка неизвестных параметров распределения на основе различных данных выборки позволяет построить распределения случайной величины.

Найти статистическую оценку неизвестного параметра распределения -- найти функцию от наблюдаемых случайных величин, которая даст приближенное значение оцениваемого параметра.

Статистические оценки можно разделить на несмещенные, смещенные, эффективные и состоятельные.

Определение 1

Несмещенная оценка -- статистическая оценка $Q^*$, которая при любом значении объема выборки, имеет математическое ожидание, равное оцениваемому параметру, то есть

\[M\left(Q^*\right)=Q\]
Определение 2

Смещенная оценка -- статистическая оценка $Q^*$, которая при любом значении объема выборки, имеет математическое ожидание, не равное оцениваемому параметру, то есть

\[M\left(Q^*\right)\ne Q\]
Определение 3

Эффективная оценка -- статистическая оценка, которая имеет наименьшее возможное значение дисперсии при заданном объеме выборки.

Определение 4

Состоятельная оценка -- статистическая оценка, при которой при объеме выборки, стремящейся к бесконечности, стремится по вероятности к оцениваемому параметру $Q.$

Определение 5

Состоятельная оценка -- статистическая оценка, при которой при объеме выборки, стремящейся к бесконечности, дисперсия несмещенной оценки стремится к нулю.

Готовые работы на аналогичную тему

Генеральная и выборочная средние

Определение 6

Генеральная средняя -- среднее арифметическое значений вариант генеральной совокупности.

Определение 7

Выборочная средняя -- среднее арифметическое значений вариант выборочной совокупности.

Величины генерального и выборочного среднего можно найти по следующим формулам:

  1. Если значения вариант $x_1,\ x_2,\dots ,x_k$ имеют, соответственно, частоты $n_1,\ n_2,\dots ,n_k$, то
  1. Если значения вариант $x_1,\ x_2,\dots ,x_k$ различны, то

С этим понятием связано такое понятие как отклонение от средней. Данная величина находится по следующей формуле:

Среднее отклонение обладает следующими свойствами:

  1. $\sum{n_i\left(x_i-\overline{x}\right)=0}$

  2. Среднее значение отклонения равно нулю.

Генеральная, выборочная и исправленная дисперсии

Еще одними из основных параметров является понятие генеральной и выборочной дисперсии:

Генеральная дисперсия:

Выборочная дисперсия:

С этими понятия связаны также генеральная и выборочная средние квадратические отклонения:

В качестве оценки генеральной дисперсии вводится понятие исправленной дисперсии:

Также вводится понятие исправленного стандартного отклонения:

Пример решения задачи

Пример 1

Генеральная совокупность задана следующей таблицей распределения:



Рисунок 1.

Найдем для нее генеральное среднее, генеральную дисперсию, генеральное среднее квадратическое отклонение, исправленную дисперсию и исправленное среднее квадратическое отклонение.

Решение:

Для решения этой задачи для начала сделаем расчетную таблицу:



Рисунок 2.

Величина $\overline{x_в}$ (среднее выборочное) находится по формуле:

\[\overline{x_в}=\frac{\sum\limits^k_{i=1}{x_in_i}}{n}\]

То есть

\[\overline{x_в}=\frac{\sum\limits^k_{i=1}{x_in_i}}{n}=\frac{87}{30}=2,9\]

Найдем генеральную дисперсию по формуле:

\[D_в=\frac{\sum\limits^k_{i=1}{{{(x}_i-\overline{x_в})}^2n_i}}{n}=\frac{60,7}{30}=2,023\]

Генеральное среднее квадратическое отклонение:

\[{\sigma }_в=\sqrt{D_в}\approx 1,42\]

Исправленная дисперсия:

\[{S^2=\frac{n}{n-1}D}_в=\frac{30}{29}\cdot 2,023\approx 2,09\]

Исправленное среднее квадратическое отклонение:

\[S=\sqrt{S^2}\approx 1,45\]
Сообщество экспертов Автор24

Автор этой статьи

Автор статьи

Елена Борисовна Калюжная

Эксперт по предмету «Математика»

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис