Разместить заказ
Вы будете перенаправлены на Автор24

Методы математической статистики

8-800-775-03-30 support@author24.ru
Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис
Все предметы / Математика / Методы математической статистики
Методы математической статистики

Данным, полученным в результате эксперимента, свойственна изменчивость, которая может быть вызвана случайной ошибкой: погрешностью измерительного прибора, неоднородностью образцов и т.д. После проведения большого количества однородных данных экспериментатору необходимо их обработать для извлечения как можно более точной информации о рассматриваемой величине. Для обработки больших массивов данных измерений, наблюдений и т.п., которые могут быть получены при проведении эксперимента, удобно применять методы математической статистики.

Математическая статистика неразрывно связана с теорией вероятностей, но между этими науками есть существенное различие. Теория вероятностей использует уже известные распределения случайных величин, на основе которых рассчитываются вероятности событий, математическое ожидание т.д. Задача математической статистики – получить как можно более достоверную информацию о распределении случайной величины на основе экспериментальных данных.

Типичные направления математической статистики:

  • теория выборок;
  • теория оценок;
  • проверка статистических гипотез;
  • регрессионный анализ;
  • дисперсионный анализ.

Методы математической статистики

Методы оценки и проверки гипотез основываются на вероятностных и гиперслучайных моделях происхождения данных.

Математическая статистика оценивает параметры и функции от них, которые представляют важные характеристики распределений (медиану, математическое ожидание, стандартное отклонение, квантили и др.), плотности и функции распределения и пр. Используются точечные и интервальные оценки.

Современная математическая статистика содержит большой раздел – статистический последовательный анализ, в котором допускается формирование массива наблюдений по одному массиву.

Математическая статистика также содержит общую теорию проверки гипотез и большое количество методов для проверки конкретных гипотез (например, о симметрии распределения, о значениях параметров и характеристик, о согласии эмпирической функции распределения с заданной функцией распределения, гипотеза проверки однородности (совпадение характеристик или функций распределения в двух выборках) и др.).

Проведением выборочных обследований, связанных с построением адекватных методов оценки и проверки гипотез, со свойствами разных схем организации выборок, занимается раздел математической статистики, имеющий большое значение. Методы математической статистики непосредственно использует следующие основные понятия.

Выборка

Определение 1

Выборкой называются данные, которые получены при проведении эксперимента.

Например, результаты дальности полета пули при выстреле одного и того же или группы однотипных орудий.

Эмпирическая функция распределения

Замечание 1

Функция распределения дает возможность выразить все важнейшие характеристики случайной величины.

В математической стаитистике существует понятие теоретической (заранее не известной) и эмпирической функции распределения.

Эмпирическая функция определяется по данным опыта (эмпирические данные), т.е. по выборке.

Гистограмма

Гистограммы используются для наглядного, но довольно приближенного, представления о неизвестном распределении.

Гистограмма представляет собой графическое изображение распределения данных.

Для получения качественной гистограммы придерживаются следующих правил:

  • Количество элементов выборки должно быть существенно меньше объема выборки.
  • Интервалы разбиения должны содержать достаточное число элементов выборки.

Если выборка очень большая зачастую интервал элементов выборки разбивают на одинаковые части.

Выборочное среднее и выборочная дисперсия

С помощью данных понятий можно получить оценку необходимых числовых характеристик неизвестного распределения, не прибегая к построению функции распределения, гистограммы и т.п.