Разместить заказ
Вы будете перенаправлены на Автор24

Равномерное распределение вероятностей

8-800-775-03-30 support@author24.ru

Напомним определение плотности вероятности.

Определение 1

Плотность распределения (плотность вероятности) $\varphi \left(x\right)$ -- это производная функции распределения непрерывной случайной величины.

Введем теперь понятие равномерного распределения вероятностей:

Определение 2

Распределение называется равномерным, если на интервале, содержащем все возможные значения случайной величины, плотность распределения постоянна, то есть:



Рисунок 1.

Найдем значение константы $\ C$, используя следующее свойство плотности распределения: $\int\limits^{+\infty }_{-\infty }{\varphi \left(x\right)dx}=1$

Получим:

\[\int\limits^{+\infty }_{-\infty }{\varphi \left(x\right)dx}=\int\limits^a_{-\infty }{0dx}+\int\limits^b_a{Cdx}+\int\limits^{+\infty }_b{0dx}=0+Cb-Ca+0=C(b-a)\] \[C\left(b-a\right)=1\] \[C=\frac{1}{b-a}\]

Таким образом, функция плотности равномерного распределения имеет вид:



Рисунок 2.

График имеет следующий вид (рис. 1):

Плотность равномерного распределения вероятности

Рисунок 3. Плотность равномерного распределения вероятности

Готовые работы на аналогичную тему

Функция равномерного распределения вероятностей

Найдем теперь функцию распределения при равномерном распределении.

Для этого будем использовать следующую формулу: $F\left(x\right)=\int\limits^x_{-\infty }{\varphi (x)dx}$

  1. При $x ≤ a$, по формуле, получим:
  1. При $a
  1. При $x> 2$, по формуле, получим:

Таким образом, функция распределения имеет вид:



Рисунок 4.

График имеет следующий вид (рис. 2):

Функция равномерного распределения вероятности.

Рисунок 5. Функция равномерного распределения вероятности.

Вероятность попадания случайной величины в интервал $({\mathbf \alpha },{\mathbf \beta })$ при равномерном распределении вероятностей

Для нахождения вероятности попадания случайной величины в интервал $(\alpha ,\beta )$ при равномерном распределении вероятностей будем пользоваться следующей формулой:

Математическое ожидание:

Дисперсия:

Среднее квадратическое отклонение:

Примеры решения задачи на равномерное распределение вероятностей

Пример 1

Интервал движения между троллейбусами составляет 9 минут.

  1. Составить функцию распределения и плотность распределения случайной величины $X$ ожидания пассажирами троллейбуса.

  2. Найти вероятность того, что пассажир дождется троллейбус меньше чем через три минуты.

  3. Найти вероятность того, что пассажир дождется троллейбус не менее чем через 4 минуты.

  4. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение

Решение.

  1. Так как непрерывная случайная величина ожидания троллейбуса $X$ равномерно распределена, то $a=0,\ b=9$.

Таким образом, плотность распределения, по формуле функции плотности равномерного распределения вероятности, имеет вид:



Рисунок 6.

По формуле функции равномерного распределения вероятности, нашем случае функция распределения имеет вид:



Рисунок 7.

  1. Данный вопрос можно переформулировать следующим образом: найдем вероятность попадания случайной величины равномерного распределения в интервал $\left(6,9\right).$

Получаем:

\[P\left(6
  • Данный вопрос можно переформулировать следующим образом: найдем вероятность попадания случайной величины равномерного распределения в интервал $\left(0,5\right).$
  • Получаем: $P\left(0

    1. Математическое ожидание: $M\left(X\right)=\frac{a+b}{2}=\frac{9}{2}=4,5$.

    Дисперсия: $D\left(X\right)=\frac{{(b-a)}^2}{12}=\frac{81}{12}=\frac{27}{4}$.

    Среднее квадратическое отклонение: $\sigma \left(X\right)=\frac{b-a}{2\sqrt{3}}=\frac{9}{2\sqrt{3}}=\frac{3\sqrt{3}}{2}$

    Статья предоставлена специалистами сервиса Автор24
    Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
    как работает сервис