Разместить заказ
Вы будете перенаправлены на Автор24

Директриса параболы

8-800-775-03-30 support@author24.ru
Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис
Директриса параболы
Определение 1

Директрисой параболы называют такую прямую, кратчайшее расстояние от которой до любой точки $M$, принадлежащей параболе точно такое же, как и расстояние от этой же точки до фокуса параболы $F$.

Фокус и директриса параболы

Рисунок 1. Фокус и директриса параболы

Основные понятия параболы

Отношение расстояний от точки $M$, лежащей на параболе, до этой прямой и от этой же точки до фокуса $F$ параболы называют эксцентриситетом параболы $ε$.

Чтобы найти эксцентриситет параболы, достаточно воспользоваться следующей формулой из определения эксцентриситета: $ε =\frac{MF}{MM_d}$, где точка $M_d$ - точка пересечения перпендикуляра, опущенного из точки $M$ c прямой $d$.

Определение 2

Каноническая парабола задается уравнением вида $y^2 = px$, где $p$ обязательно должно быть больше нуля.

Более часто приходится иметь дело с параболой, вершина которой не находится в точке начала координатных осей, и тогда уравнение параболы приобретает следующий вид:

$y = ax^2 + bx + c$, при этом коэффициент $a$ не равен нулю.

Чтобы найти директрису такой параболы, необходимо от такой формы перейти к канонической, ниже в примерах показано, как это сделать.

Расстояние от фокуса до директрисы параболы называется её фокальным параметром $p$. Уравнение директрисы канонической параболы имеет следующий вид: $x=-p/2$

Алгоритм составления уравнения директрисы параболы, заданной не каноническим уравнением

Чтобы составить уравнение директрисы параболы, вершина которой не находится на пересечении осей координат, достаточно воспользоваться следующим алгоритмом:

  1. Перенесите все слагаемые с $y$ в левую часть уравнения, а с $x$ - в правую.
  2. Упростите полученное выражение.
  3. Введите дополнительные переменные чтобы прийти к каноническому виду уравнения.
Пример 1

Составьте уравнение директрисы параболы, описанной уравнением $4x^2 + 24 x – 4y + 36 = 0$

  1. Переносим все слагаемые с $y$ в левую часть и избавляемся от множителя, получаем:

    $y^2 = x^2 + 6x – y + 9$

  2. Приводим в форму квадрата:

    $(x + 3)^2 = y$

  3. Вводим дополнительные переменные $t = x + 3$ и $y = z$

  4. Получаем следующее уравнение: $t^2 = z$
  5. Выражаем $p$ из канонического уравнения параболы, получаем $p = \frac{y^2}{2x}$, следовательно, в нашем случае $p = \frac{1}{2}$.
  6. Уравнение директрисы приобретает следующий вид: $t = -\frac{1}{4} \cdot t$. Подставляем $t$ и получаем следующее уравнение директрисы $x = -3\frac{1}{4}$.