Разместить заказ
Вы будете перенаправлены на Автор24

Найти определитель матрицы третьего порядка

8-800-775-03-30 support@author24.ru
Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис
Все предметы / Математика / Найти определитель матрицы третьего порядка
Найти определитель матрицы третьего порядка

Существует несколько способов нахождения определителей матриц третьего порядка. Рассмотрим их подробнее.

Перечислим основные способы, используемые для этого:

  • Правило Саррюса;
  • Правило треугольников;
  • Использование специальной формулы для вычисления;
  • Использование метода Гаусса или иначе метода перестановок.

Правило Саррюса

Правило Саррюса для вычисления матриц 3-ьего порядка применяется просто: достаточно соответственно рисунку переписать 2 первых столбика справа рядом с матричной таблицей, а затем записать произведения, стоящие по диагоналям со знаками.

Замечание 1

Если диагональ идёт сверху слева вниз направо — то произведение записывается со знаком «+», а если диагональ идёт из правого верхнего угла в нижний левый — то со знаком «-».

Формула третьего порядка. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Формула третьего порядка. Автор24 — интернет-биржа студенческих работ

Пример 1

Дана матричная таблица $A$. Вычислите детерминант с помощью правила Саррюса.

$A = \begin{pmatrix} 0 & 3 & -1 \\ 1 & 4 & 2 \\ 2 & 5 & 3 \\ \end{pmatrix}$

Решение:

Вычисление определителя 3 порядка. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Вычисление определителя 3 порядка. Автор24 — интернет-биржа студенческих работ

$Δ = 0 \cdot 4 \cdot 3 + 3 \cdot 2 \cdot 2 – 1 \cdot 1 \cdot 5 – 3 \cdot 1 \cdot 3 – 0 \cdot 2 \cdot 5 + 1 \cdot 4 \cdot 2 = 0 + 12 – 5 - 9 – 0 + 8 = 6$

Правило треугольников

Это правило немного похоже на предыдущее. Суть его в том, что произведения элементов с главной диагонали и двух треугольников, задействующих все остальные элементы как показано на рисунке, записываются со знаком плюс, а произведения элементов с побочной диагонали и двух синих треугольников — с противоположным.

Треугольники. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Треугольники. Автор24 — интернет-биржа студенческих работ

Пример 2

Найдите определитель из прошлого задания, используя метод треугольников.

Решение:

Наглядный пример как пользоваться. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Наглядный пример как пользоваться. Автор24 — интернет-биржа студенческих работ

$Δ= 0 \cdot 4 3 + 3 \cdot 2 \cdot 2 – 1 \cdot 5 \cdot 1 + 1 \cdot 4 \cdot 2 – 1 \cdot 3 \cdot 3 – 2 \cdot 5 \cdot 0 = 0 + 12 – 5 + 8 – 9 – 0 = 6$

Использование формулы разложения по строчке

$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{pmatrix}$

Для матрицы 3 на 3, приведённой выше, определитель можно сосчитать по формуле:

$Δ =\begin{array}{|ccc|} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array}=a_{11} \cdot \begin{array}{|cc|} a_{22} & a_{23} \\ a_{32} & a_{33} \\ \end{array} – a_{12} \cdot \begin{array}{|cc|} a_{11} & a_{13} \\ a_{21} & a_{23} \\ a_{31} & a_{33} \\ \end{array} + a_{13} \cdot \begin{array}{|cc|} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ \end{array}= a_{11} \cdot a_{22} \cdot a_{33} – a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} - a_{13} \cdot a_{22} \cdot a_{31}$.

Пример 3

Разложите определитель матрицы из предыдущих примеров по 1-ой строчке и найдите его.

Решение:

$Δ = 0 \cdot \begin{array}{|cc|} 4 & 2 \\ 5 & 3 \\ \ \end{array} – 3 \cdot \begin{array} {|cc|} 1 & 2 \\ 2 & 3 \\ \ \end{array} + (-1) \cdot \begin{array}{|cc|} 1 & 4 \\ 2 & 5 \\ \ \end{array} = 0 – 3 \cdot (1 \cdot 3 – 2 \cdot 2) + (-1) \cdot (5 – 8) = 0 – 3 \cdot(-1) + (-1) \cdot (-3) = 3 + 3 = 6$

Метод Гаусса

Чтобы вычислить детерминант этим методом, нужно используя разрешённые преобразования получить треугольную матрицу.

Разрешёнными преобразованиями являются сложение и вычитание строчек и столбцов, в то время как при перестановке строчек и столбцов между собой необходимо помнить о смене знака определителя в конце.

После этого нужно перемножить элементы, стоящие на главной диагонали, их произведение и будет определителем.

Пример 4

Примените метод Гаусса для получения детерминанта матрицы из предыдущих примеров.

Решение:

$A = \begin{pmatrix} 0 & 3 & -1 \\ 1 & 4 & 2 \\ 2 & 5 & 3 \\ \end{pmatrix}$

Переставим первую строчку со второй, при этом запомним, что знак детерминанта в конце поменяется:

$\begin{pmatrix} 1 & 4 & 2 \\ 0 & 3 & -1 \\ 2 & 5 & 3 \\ \end{pmatrix}$;

Вычтем из третьей строчки 1-ую, умноженную на 2:

$\begin{pmatrix} 1 & 4 & 2 \\ 0 & 3 & -1 \\ 0 & -3 & -1 \\ \end{pmatrix}$;

Сложим между собой третью строчку со второй:

$\begin{pmatrix} 1 & 4 & 2 \\ 0 & 3 & -1 \\ 0 & 0 & -2 \\ \end{pmatrix}$;

Получили искомый вид матрицы. Теперь можно сосчитать определитель, минус появляется из-за перемены строчек местами:

$Δ=-\begin{pmatrix} 1 & 4 & 2 \\ 0 & 3 & -1 \\ 0 & 0 & -2 \\ \end{pmatrix}= -(1 \cdot 3 \cdot ( - 2) ) = 6 $